{"title":"超图上意见动态有界置信度模型的密度描述","authors":"Weiqi Chu, Mason A. Porter","doi":"10.1137/22m148608x","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Mathematics, Volume 83, Issue 6, Page 2310-2328, December 2023. <br/> Abstract. Social interactions often occur between three or more agents simultaneously. Examining opinion dynamics on hypergraphs allows one to study the effect of such polyadic interactions on the opinions of agents. In this paper, we consider a bounded-confidence model (BCM), in which opinions take continuous values and interacting agents comprise their opinions if they are close enough to each other. We study a density description of a Deffuant–Weisbuch BCM on hypergraphs. We derive a rate equation for the mean-field opinion density as the number of agents becomes infinite, and we prove that this rate equation yields a probability density that converges to noninteracting opinion clusters. Using numerical simulations, we examine bifurcations of the density-based BCM’s steady-state opinion clusters and demonstrate that the agent-based BCM converges to the density description of the BCM as the number of agents becomes infinite.","PeriodicalId":51149,"journal":{"name":"SIAM Journal on Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Density Description of a Bounded-Confidence Model of Opinion Dynamics on Hypergraphs\",\"authors\":\"Weiqi Chu, Mason A. Porter\",\"doi\":\"10.1137/22m148608x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Applied Mathematics, Volume 83, Issue 6, Page 2310-2328, December 2023. <br/> Abstract. Social interactions often occur between three or more agents simultaneously. Examining opinion dynamics on hypergraphs allows one to study the effect of such polyadic interactions on the opinions of agents. In this paper, we consider a bounded-confidence model (BCM), in which opinions take continuous values and interacting agents comprise their opinions if they are close enough to each other. We study a density description of a Deffuant–Weisbuch BCM on hypergraphs. We derive a rate equation for the mean-field opinion density as the number of agents becomes infinite, and we prove that this rate equation yields a probability density that converges to noninteracting opinion clusters. Using numerical simulations, we examine bifurcations of the density-based BCM’s steady-state opinion clusters and demonstrate that the agent-based BCM converges to the density description of the BCM as the number of agents becomes infinite.\",\"PeriodicalId\":51149,\"journal\":{\"name\":\"SIAM Journal on Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22m148608x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m148608x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A Density Description of a Bounded-Confidence Model of Opinion Dynamics on Hypergraphs
SIAM Journal on Applied Mathematics, Volume 83, Issue 6, Page 2310-2328, December 2023. Abstract. Social interactions often occur between three or more agents simultaneously. Examining opinion dynamics on hypergraphs allows one to study the effect of such polyadic interactions on the opinions of agents. In this paper, we consider a bounded-confidence model (BCM), in which opinions take continuous values and interacting agents comprise their opinions if they are close enough to each other. We study a density description of a Deffuant–Weisbuch BCM on hypergraphs. We derive a rate equation for the mean-field opinion density as the number of agents becomes infinite, and we prove that this rate equation yields a probability density that converges to noninteracting opinion clusters. Using numerical simulations, we examine bifurcations of the density-based BCM’s steady-state opinion clusters and demonstrate that the agent-based BCM converges to the density description of the BCM as the number of agents becomes infinite.
期刊介绍:
SIAM Journal on Applied Mathematics (SIAP) is an interdisciplinary journal containing research articles that treat scientific problems using methods that are of mathematical interest. Appropriate subject areas include the physical, engineering, financial, and life sciences. Examples are problems in fluid mechanics, including reaction-diffusion problems, sedimentation, combustion, and transport theory; solid mechanics; elasticity; electromagnetic theory and optics; materials science; mathematical biology, including population dynamics, biomechanics, and physiology; linear and nonlinear wave propagation, including scattering theory and wave propagation in random media; inverse problems; nonlinear dynamics; and stochastic processes, including queueing theory. Mathematical techniques of interest include asymptotic methods, bifurcation theory, dynamical systems theory, complex network theory, computational methods, and probabilistic and statistical methods.