估计D 'Arcais多项式的最大零

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Bernhard Heim, Markus Neuhauser
{"title":"估计D 'Arcais多项式的最大零","authors":"Bernhard Heim, Markus Neuhauser","doi":"10.1007/s40687-023-00412-z","DOIUrl":null,"url":null,"abstract":"<p>The zeros of the <i>n</i>th D’Arcais polynomial, also known in combinatorics as the Nekrasov–Okounkov polynomial, dictate the vanishing properties of the <i>n</i>th Fourier coefficients of all complex powers <i>x</i> of the Dedekind <span>\\(\\eta \\)</span>-function. In this paper, we prove that these coefficients are non-vanishing for <span>\\(\\vert x \\vert &gt; \\kappa \\, (n-1)\\)</span> and <span>\\(\\kappa \\approx 9.7225\\)</span>. Numerical computations imply that 9.72245 is a lower bound for <span>\\(\\kappa \\)</span>. This significantly improves previous results by Kostant, Han, and Heim–Neuhauser. The polynomials studied in this paper include Chebyshev polynomials of the second kind, 1-associated Laguerre polynomials, Hermite polynomials, and polynomials associated with overpartitions and plane partitions.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimate for the largest zeros of the D’Arcais polynomials\",\"authors\":\"Bernhard Heim, Markus Neuhauser\",\"doi\":\"10.1007/s40687-023-00412-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The zeros of the <i>n</i>th D’Arcais polynomial, also known in combinatorics as the Nekrasov–Okounkov polynomial, dictate the vanishing properties of the <i>n</i>th Fourier coefficients of all complex powers <i>x</i> of the Dedekind <span>\\\\(\\\\eta \\\\)</span>-function. In this paper, we prove that these coefficients are non-vanishing for <span>\\\\(\\\\vert x \\\\vert &gt; \\\\kappa \\\\, (n-1)\\\\)</span> and <span>\\\\(\\\\kappa \\\\approx 9.7225\\\\)</span>. Numerical computations imply that 9.72245 is a lower bound for <span>\\\\(\\\\kappa \\\\)</span>. This significantly improves previous results by Kostant, Han, and Heim–Neuhauser. The polynomials studied in this paper include Chebyshev polynomials of the second kind, 1-associated Laguerre polynomials, Hermite polynomials, and polynomials associated with overpartitions and plane partitions.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40687-023-00412-z\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40687-023-00412-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

第n个D 'Arcais多项式(在组合学中也称为Nekrasov-Okounkov多项式)的零点决定了Dedekind \(\eta \) -函数的所有复幂x的第n个傅立叶系数的消失性质。在本文中,我们证明了这些系数对于\(\vert x \vert > \kappa \, (n-1)\)和\(\kappa \approx 9.7225\)是不消失的。数值计算表明,9.72245是\(\kappa \)的下界。这大大改进了Kostant、Han和Heim-Neuhauser先前的结果。本文研究的多项式包括第二类Chebyshev多项式、1相关的Laguerre多项式、Hermite多项式、过分割多项式和平面分割多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Estimate for the largest zeros of the D’Arcais polynomials

Estimate for the largest zeros of the D’Arcais polynomials

The zeros of the nth D’Arcais polynomial, also known in combinatorics as the Nekrasov–Okounkov polynomial, dictate the vanishing properties of the nth Fourier coefficients of all complex powers x of the Dedekind \(\eta \)-function. In this paper, we prove that these coefficients are non-vanishing for \(\vert x \vert > \kappa \, (n-1)\) and \(\kappa \approx 9.7225\). Numerical computations imply that 9.72245 is a lower bound for \(\kappa \). This significantly improves previous results by Kostant, Han, and Heim–Neuhauser. The polynomials studied in this paper include Chebyshev polynomials of the second kind, 1-associated Laguerre polynomials, Hermite polynomials, and polynomials associated with overpartitions and plane partitions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信