多面体几何反散射问题的两个单次测量唯一性结果

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Xinlin Cao,Huaian Diao,Hongyu Liu,Jun Zou
{"title":"多面体几何反散射问题的两个单次测量唯一性结果","authors":"Xinlin Cao,Huaian Diao,Hongyu Liu,Jun Zou","doi":"10.3934/ipi.2022023","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We consider the unique determinations of impenetrable obstacles or diffraction grating profiles in <inline-formula><tex-math id=\"M1\">\\begin{document}$ \\mathbb{R}^3 $\\end{document}</tex-math></inline-formula> by a single far-field measurement within polyhedral geometries. We are particularly interested in the case that the scattering objects are of impedance type. We derive two new unique identifiability results by a single measurement for the inverse scattering problem in the aforementioned two challenging setups. The main technical idea is to exploit certain quantitative geometric properties of the Laplacian eigenfunctions which were initiated in our recent works [<xref ref-type=\"bibr\" rid=\"b12\">12</xref>,<xref ref-type=\"bibr\" rid=\"b13\">13</xref>]. In this paper, we derive novel geometric properties that generalize and extend the related results in [<xref ref-type=\"bibr\" rid=\"b13\">13</xref>], which further enable us to establish the new unique identifiability results. It is pointed out that in addition to the shape of the obstacle or the grating profile, we can simultaneously recover the boundary impedance parameters.</p>","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":"35 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two single-measurement uniqueness results for inverse scattering problems within polyhedral geometries\",\"authors\":\"Xinlin Cao,Huaian Diao,Hongyu Liu,Jun Zou\",\"doi\":\"10.3934/ipi.2022023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>We consider the unique determinations of impenetrable obstacles or diffraction grating profiles in <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ \\\\mathbb{R}^3 $\\\\end{document}</tex-math></inline-formula> by a single far-field measurement within polyhedral geometries. We are particularly interested in the case that the scattering objects are of impedance type. We derive two new unique identifiability results by a single measurement for the inverse scattering problem in the aforementioned two challenging setups. The main technical idea is to exploit certain quantitative geometric properties of the Laplacian eigenfunctions which were initiated in our recent works [<xref ref-type=\\\"bibr\\\" rid=\\\"b12\\\">12</xref>,<xref ref-type=\\\"bibr\\\" rid=\\\"b13\\\">13</xref>]. In this paper, we derive novel geometric properties that generalize and extend the related results in [<xref ref-type=\\\"bibr\\\" rid=\\\"b13\\\">13</xref>], which further enable us to establish the new unique identifiability results. It is pointed out that in addition to the shape of the obstacle or the grating profile, we can simultaneously recover the boundary impedance parameters.</p>\",\"PeriodicalId\":50274,\"journal\":{\"name\":\"Inverse Problems and Imaging\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems and Imaging\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/ipi.2022023\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems and Imaging","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/ipi.2022023","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

<p style='text-indent:20px;'>We consider the unique determinations of impenetrable obstacles or diffraction grating profiles in <inline-formula><tex-math id="M1">\begin{document}$ \mathbb{R}^3 $\end{document}</tex-math></inline-formula> by a single far-field measurement within polyhedral geometries. We are particularly interested in the case that the scattering objects are of impedance type. We derive two new unique identifiability results by a single measurement for the inverse scattering problem in the aforementioned two challenging setups. The main technical idea is to exploit certain quantitative geometric properties of the Laplacian eigenfunctions which were initiated in our recent works [<xref ref-type="bibr" rid="b12">12</xref>,<xref ref-type="bibr" rid="b13">13</xref>]. In this paper, we derive novel geometric properties that generalize and extend the related results in [<xref ref-type="bibr" rid="b13">13</xref>], which further enable us to establish the new unique identifiability results. It is pointed out that in addition to the shape of the obstacle or the grating profile, we can simultaneously recover the boundary impedance parameters.</p>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two single-measurement uniqueness results for inverse scattering problems within polyhedral geometries
<p style='text-indent:20px;'>We consider the unique determinations of impenetrable obstacles or diffraction grating profiles in <inline-formula><tex-math id="M1">\begin{document}$ \mathbb{R}^3 $\end{document}</tex-math></inline-formula> by a single far-field measurement within polyhedral geometries. We are particularly interested in the case that the scattering objects are of impedance type. We derive two new unique identifiability results by a single measurement for the inverse scattering problem in the aforementioned two challenging setups. The main technical idea is to exploit certain quantitative geometric properties of the Laplacian eigenfunctions which were initiated in our recent works [<xref ref-type="bibr" rid="b12">12</xref>,<xref ref-type="bibr" rid="b13">13</xref>]. In this paper, we derive novel geometric properties that generalize and extend the related results in [<xref ref-type="bibr" rid="b13">13</xref>], which further enable us to establish the new unique identifiability results. It is pointed out that in addition to the shape of the obstacle or the grating profile, we can simultaneously recover the boundary impedance parameters.</p>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inverse Problems and Imaging
Inverse Problems and Imaging 数学-物理:数学物理
CiteScore
2.50
自引率
0.00%
发文量
55
审稿时长
>12 weeks
期刊介绍: Inverse Problems and Imaging publishes research articles of the highest quality that employ innovative mathematical and modeling techniques to study inverse and imaging problems arising in engineering and other sciences. Every published paper has a strong mathematical orientation employing methods from such areas as control theory, discrete mathematics, differential geometry, harmonic analysis, functional analysis, integral geometry, mathematical physics, numerical analysis, optimization, partial differential equations, and stochastic and statistical methods. The field of applications includes medical and other imaging, nondestructive testing, geophysical prospection and remote sensing as well as image analysis and image processing. This journal is committed to recording important new results in its field and will maintain the highest standards of innovation and quality. To be published in this journal, a paper must be correct, novel, nontrivial and of interest to a substantial number of researchers and readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信