{"title":"概率语言环境下的DEMATEL-COPRAS混合方法及其在第三方物流供应商选择中的应用","authors":"Yayi Yuan, Zeshui Xu, Yixin Zhang","doi":"10.1007/s10700-021-09358-9","DOIUrl":null,"url":null,"abstract":"<p>With the emergence of outsourcing logistics and the rapid development of the e-commerce business, Third Party Logistics (TPL) plays an indispensable role in modern business. In the TPL provider selection process, uncertain information brings more challenges to decision makers. This paper uses probabilistic linguistic term sets (PLTSs) to describe uncertain decision making information. Firstly, we propose an improved Decision Making Trial and Evaluation Laboratory method, which allows a certain relationship between decision criteria and calculates criteria weights in multi-criteria decision making (MCDM) problems. Then, in order to make full use of uncertain TPL provider information and maximize the values of data, the probabilistic linguistic complex proportional assessment method is proposed and applied to solve the MCDM problems under probabilistic linguistic environment, which needs much less computation than other MCDM methods. Finally, an application example of TPL provider selection is presented to demonstrate the proposed method. A comparative analysis is further conducted to validate the effectiveness of the proposed method.</p>","PeriodicalId":55131,"journal":{"name":"Fuzzy Optimization and Decision Making","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2021-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"The DEMATEL–COPRAS hybrid method under probabilistic linguistic environment and its application in Third Party Logistics provider selection\",\"authors\":\"Yayi Yuan, Zeshui Xu, Yixin Zhang\",\"doi\":\"10.1007/s10700-021-09358-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the emergence of outsourcing logistics and the rapid development of the e-commerce business, Third Party Logistics (TPL) plays an indispensable role in modern business. In the TPL provider selection process, uncertain information brings more challenges to decision makers. This paper uses probabilistic linguistic term sets (PLTSs) to describe uncertain decision making information. Firstly, we propose an improved Decision Making Trial and Evaluation Laboratory method, which allows a certain relationship between decision criteria and calculates criteria weights in multi-criteria decision making (MCDM) problems. Then, in order to make full use of uncertain TPL provider information and maximize the values of data, the probabilistic linguistic complex proportional assessment method is proposed and applied to solve the MCDM problems under probabilistic linguistic environment, which needs much less computation than other MCDM methods. Finally, an application example of TPL provider selection is presented to demonstrate the proposed method. A comparative analysis is further conducted to validate the effectiveness of the proposed method.</p>\",\"PeriodicalId\":55131,\"journal\":{\"name\":\"Fuzzy Optimization and Decision Making\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2021-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuzzy Optimization and Decision Making\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10700-021-09358-9\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuzzy Optimization and Decision Making","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10700-021-09358-9","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
The DEMATEL–COPRAS hybrid method under probabilistic linguistic environment and its application in Third Party Logistics provider selection
With the emergence of outsourcing logistics and the rapid development of the e-commerce business, Third Party Logistics (TPL) plays an indispensable role in modern business. In the TPL provider selection process, uncertain information brings more challenges to decision makers. This paper uses probabilistic linguistic term sets (PLTSs) to describe uncertain decision making information. Firstly, we propose an improved Decision Making Trial and Evaluation Laboratory method, which allows a certain relationship between decision criteria and calculates criteria weights in multi-criteria decision making (MCDM) problems. Then, in order to make full use of uncertain TPL provider information and maximize the values of data, the probabilistic linguistic complex proportional assessment method is proposed and applied to solve the MCDM problems under probabilistic linguistic environment, which needs much less computation than other MCDM methods. Finally, an application example of TPL provider selection is presented to demonstrate the proposed method. A comparative analysis is further conducted to validate the effectiveness of the proposed method.
期刊介绍:
The key objective of Fuzzy Optimization and Decision Making is to promote research and the development of fuzzy technology and soft-computing methodologies to enhance our ability to address complicated optimization and decision making problems involving non-probabilitic uncertainty.
The journal will cover all aspects of employing fuzzy technologies to see optimal solutions and assist in making the best possible decisions. It will provide a global forum for advancing the state-of-the-art theory and practice of fuzzy optimization and decision making in the presence of uncertainty. Any theoretical, empirical, and experimental work related to fuzzy modeling and associated mathematics, solution methods, and systems is welcome. The goal is to help foster the understanding, development, and practice of fuzzy technologies for solving economic, engineering, management, and societal problems. The journal will provide a forum for authors and readers in the fields of business, economics, engineering, mathematics, management science, operations research, and systems.