分区上的拉姆齐理论I:强迫公理的正拉姆齐关系

IF 0.8 2区 数学 Q2 MATHEMATICS
Menachem Kojman, Assaf Rinot, Juris Steprāns
{"title":"分区上的拉姆齐理论I:强迫公理的正拉姆齐关系","authors":"Menachem Kojman, Assaf Rinot, Juris Steprāns","doi":"10.1007/s11856-023-2573-x","DOIUrl":null,"url":null,"abstract":"<p>In this series of papers we advance Ramsey theory over partitions. In this part, a correspondence between anti-Ramsey properties of partitions and chain conditions of the natural forcing notions that homogenize colorings over them is uncovered. At the level of the first uncountable cardinal this gives rise to a duality theorem under Martin’s Axiom: a function <i>p</i>: [<i>ω</i><sub>1</sub>]<sup>2</sup> → <i>ω</i> witnesses a weak negative Ramsey relation when <i>p</i> plays the role of a coloring if and only if a positive Ramsey relation holds over <i>p</i> when <i>p</i> plays the role of a partition.</p><p>The consistency of positive Ramsey relations over partitions does not stop at the first uncountable cardinal: it is established that at arbitrarily high uncountable cardinals these relations follow from forcing axioms without large cardinal strength. This result solves in particular two problems from [CKS21].</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ramsey theory over partitions I: Positive Ramsey relations from forcing axioms\",\"authors\":\"Menachem Kojman, Assaf Rinot, Juris Steprāns\",\"doi\":\"10.1007/s11856-023-2573-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this series of papers we advance Ramsey theory over partitions. In this part, a correspondence between anti-Ramsey properties of partitions and chain conditions of the natural forcing notions that homogenize colorings over them is uncovered. At the level of the first uncountable cardinal this gives rise to a duality theorem under Martin’s Axiom: a function <i>p</i>: [<i>ω</i><sub>1</sub>]<sup>2</sup> → <i>ω</i> witnesses a weak negative Ramsey relation when <i>p</i> plays the role of a coloring if and only if a positive Ramsey relation holds over <i>p</i> when <i>p</i> plays the role of a partition.</p><p>The consistency of positive Ramsey relations over partitions does not stop at the first uncountable cardinal: it is established that at arbitrarily high uncountable cardinals these relations follow from forcing axioms without large cardinal strength. This result solves in particular two problems from [CKS21].</p>\",\"PeriodicalId\":14661,\"journal\":{\"name\":\"Israel Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Israel Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-023-2573-x\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-023-2573-x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这一系列的论文中,我们提出了拉姆齐分区理论。在这一部分中,揭示了分区的反拉姆齐性质与使其上的着色均匀化的自然强迫概念的链条件之间的对应关系。在第一不可数基数的水平上,这就产生了马丁公理下的对偶定理:当p扮演着色角色时,函数p: [ω1]2→ω证明了一个弱负的Ramsey关系,当且仅当p扮演分划角色时,一个正的Ramsey关系在p上成立。分区上正拉姆齐关系的一致性并不局限于第一个不可数基数:我们建立了在任意高的不可数基数下,这些关系遵循没有大基数强度的强制公理。该结果特别解决了[CKS21]中的两个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ramsey theory over partitions I: Positive Ramsey relations from forcing axioms

In this series of papers we advance Ramsey theory over partitions. In this part, a correspondence between anti-Ramsey properties of partitions and chain conditions of the natural forcing notions that homogenize colorings over them is uncovered. At the level of the first uncountable cardinal this gives rise to a duality theorem under Martin’s Axiom: a function p: [ω1]2ω witnesses a weak negative Ramsey relation when p plays the role of a coloring if and only if a positive Ramsey relation holds over p when p plays the role of a partition.

The consistency of positive Ramsey relations over partitions does not stop at the first uncountable cardinal: it is established that at arbitrarily high uncountable cardinals these relations follow from forcing axioms without large cardinal strength. This result solves in particular two problems from [CKS21].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
90
审稿时长
6 months
期刊介绍: The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信