František Bartoš, Alexandra Sarafoglou, Henrik R. Godmann, Amir Sahrani, David Klein Leunk, Pierre Y. Gui, David Voss, Kaleem Ullah, Malte J. Zoubek, Franziska Nippold, Frederik Aust, Felipe F. Vieira, Chris-Gabriel Islam, Anton J. Zoubek, Sara Shabani, Jonas Petter, Ingeborg B. Roos, Adam Finnemann, Aaron B. Lob, Madlen F. Hoffstadt, Jason Nak, Jill de Ron, Koen Derks, Karoline Huth, Sjoerd Terpstra, Thomas Bastelica5, Magda Matetovici, Vincent L. Ott, Andreea S. Zetea, Katharina Karnbach, Michelle C. Donzallaz, Arne John, Roy M. Moore, Franziska Assion, Riet van Bork, Theresa E. Leidinger, Xiaochang Zhao, Adrian Karami Motaghi, Ting Pang, Hannah Armstrong, Tianqi Peng, Mara Bialas, Joyce Y. -C. Pang, Bohan Fu, Shujun Yang, Xiaoyi Lin, Dana Sleiffer, Miklos Bognar, Balazs Aczel, Eric-Jan Wagenmakers
{"title":"公平硬币倾向于落在开始时的同一边:来自350,757次投掷的证据","authors":"František Bartoš, Alexandra Sarafoglou, Henrik R. Godmann, Amir Sahrani, David Klein Leunk, Pierre Y. Gui, David Voss, Kaleem Ullah, Malte J. Zoubek, Franziska Nippold, Frederik Aust, Felipe F. Vieira, Chris-Gabriel Islam, Anton J. Zoubek, Sara Shabani, Jonas Petter, Ingeborg B. Roos, Adam Finnemann, Aaron B. Lob, Madlen F. Hoffstadt, Jason Nak, Jill de Ron, Koen Derks, Karoline Huth, Sjoerd Terpstra, Thomas Bastelica5, Magda Matetovici, Vincent L. Ott, Andreea S. Zetea, Katharina Karnbach, Michelle C. Donzallaz, Arne John, Roy M. Moore, Franziska Assion, Riet van Bork, Theresa E. Leidinger, Xiaochang Zhao, Adrian Karami Motaghi, Ting Pang, Hannah Armstrong, Tianqi Peng, Mara Bialas, Joyce Y. -C. Pang, Bohan Fu, Shujun Yang, Xiaoyi Lin, Dana Sleiffer, Miklos Bognar, Balazs Aczel, Eric-Jan Wagenmakers","doi":"arxiv-2310.04153","DOIUrl":null,"url":null,"abstract":"Many people have flipped coins but few have stopped to ponder the statistical\nand physical intricacies of the process. In a preregistered study we collected\n350,757 coin flips to test the counterintuitive prediction from a physics model\nof human coin tossing developed by Persi Diaconis. The model asserts that when\npeople flip an ordinary coin, it tends to land on the same side it started --\nDiaconis estimated the probability of a same-side outcome to be about 51%. Our\ndata lend strong support to this precise prediction: the coins landed on the\nsame side more often than not, $\\text{Pr}(\\text{same side}) = 0.508$, 95%\ncredible interval (CI) [$0.506$, $0.509$], $\\text{BF}_{\\text{same-side bias}} =\n2364$. Furthermore, the data revealed considerable between-people variation in\nthe degree of this same-side bias. Our data also confirmed the generic\nprediction that when people flip an ordinary coin -- with the initial side-up\nrandomly determined -- it is equally likely to land heads or tails:\n$\\text{Pr}(\\text{heads}) = 0.500$, 95% CI [$0.498$, $0.502$],\n$\\text{BF}_{\\text{heads-tails bias}} = 0.183$. Furthermore, this lack of\nheads-tails bias does not appear to vary across coins. Our data therefore\nprovide strong evidence that when some (but not all) people flip a fair coin,\nit tends to land on the same side it started. Our data provide compelling\nstatistical support for Diaconis' physics model of coin tossing.","PeriodicalId":501323,"journal":{"name":"arXiv - STAT - Other Statistics","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fair coins tend to land on the same side they started: Evidence from 350,757 Flips\",\"authors\":\"František Bartoš, Alexandra Sarafoglou, Henrik R. Godmann, Amir Sahrani, David Klein Leunk, Pierre Y. Gui, David Voss, Kaleem Ullah, Malte J. Zoubek, Franziska Nippold, Frederik Aust, Felipe F. Vieira, Chris-Gabriel Islam, Anton J. Zoubek, Sara Shabani, Jonas Petter, Ingeborg B. Roos, Adam Finnemann, Aaron B. Lob, Madlen F. Hoffstadt, Jason Nak, Jill de Ron, Koen Derks, Karoline Huth, Sjoerd Terpstra, Thomas Bastelica5, Magda Matetovici, Vincent L. Ott, Andreea S. Zetea, Katharina Karnbach, Michelle C. Donzallaz, Arne John, Roy M. Moore, Franziska Assion, Riet van Bork, Theresa E. Leidinger, Xiaochang Zhao, Adrian Karami Motaghi, Ting Pang, Hannah Armstrong, Tianqi Peng, Mara Bialas, Joyce Y. -C. Pang, Bohan Fu, Shujun Yang, Xiaoyi Lin, Dana Sleiffer, Miklos Bognar, Balazs Aczel, Eric-Jan Wagenmakers\",\"doi\":\"arxiv-2310.04153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many people have flipped coins but few have stopped to ponder the statistical\\nand physical intricacies of the process. In a preregistered study we collected\\n350,757 coin flips to test the counterintuitive prediction from a physics model\\nof human coin tossing developed by Persi Diaconis. The model asserts that when\\npeople flip an ordinary coin, it tends to land on the same side it started --\\nDiaconis estimated the probability of a same-side outcome to be about 51%. Our\\ndata lend strong support to this precise prediction: the coins landed on the\\nsame side more often than not, $\\\\text{Pr}(\\\\text{same side}) = 0.508$, 95%\\ncredible interval (CI) [$0.506$, $0.509$], $\\\\text{BF}_{\\\\text{same-side bias}} =\\n2364$. Furthermore, the data revealed considerable between-people variation in\\nthe degree of this same-side bias. Our data also confirmed the generic\\nprediction that when people flip an ordinary coin -- with the initial side-up\\nrandomly determined -- it is equally likely to land heads or tails:\\n$\\\\text{Pr}(\\\\text{heads}) = 0.500$, 95% CI [$0.498$, $0.502$],\\n$\\\\text{BF}_{\\\\text{heads-tails bias}} = 0.183$. Furthermore, this lack of\\nheads-tails bias does not appear to vary across coins. Our data therefore\\nprovide strong evidence that when some (but not all) people flip a fair coin,\\nit tends to land on the same side it started. Our data provide compelling\\nstatistical support for Diaconis' physics model of coin tossing.\",\"PeriodicalId\":501323,\"journal\":{\"name\":\"arXiv - STAT - Other Statistics\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Other Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2310.04153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Other Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2310.04153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fair coins tend to land on the same side they started: Evidence from 350,757 Flips
Many people have flipped coins but few have stopped to ponder the statistical
and physical intricacies of the process. In a preregistered study we collected
350,757 coin flips to test the counterintuitive prediction from a physics model
of human coin tossing developed by Persi Diaconis. The model asserts that when
people flip an ordinary coin, it tends to land on the same side it started --
Diaconis estimated the probability of a same-side outcome to be about 51%. Our
data lend strong support to this precise prediction: the coins landed on the
same side more often than not, $\text{Pr}(\text{same side}) = 0.508$, 95%
credible interval (CI) [$0.506$, $0.509$], $\text{BF}_{\text{same-side bias}} =
2364$. Furthermore, the data revealed considerable between-people variation in
the degree of this same-side bias. Our data also confirmed the generic
prediction that when people flip an ordinary coin -- with the initial side-up
randomly determined -- it is equally likely to land heads or tails:
$\text{Pr}(\text{heads}) = 0.500$, 95% CI [$0.498$, $0.502$],
$\text{BF}_{\text{heads-tails bias}} = 0.183$. Furthermore, this lack of
heads-tails bias does not appear to vary across coins. Our data therefore
provide strong evidence that when some (but not all) people flip a fair coin,
it tends to land on the same side it started. Our data provide compelling
statistical support for Diaconis' physics model of coin tossing.