黎曼流形上的高斯微分隐私性

Yangdi Jiang, Xiaotian Chang, Yi Liu, Lei Ding, Linglong Kong, Bei Jiang
{"title":"黎曼流形上的高斯微分隐私性","authors":"Yangdi Jiang, Xiaotian Chang, Yi Liu, Lei Ding, Linglong Kong, Bei Jiang","doi":"arxiv-2311.10101","DOIUrl":null,"url":null,"abstract":"We develop an advanced approach for extending Gaussian Differential Privacy\n(GDP) to general Riemannian manifolds. The concept of GDP stands out as a\nprominent privacy definition that strongly warrants extension to manifold\nsettings, due to its central limit properties. By harnessing the power of the\nrenowned Bishop-Gromov theorem in geometric analysis, we propose a Riemannian\nGaussian distribution that integrates the Riemannian distance, allowing us to\nachieve GDP in Riemannian manifolds with bounded Ricci curvature. To the best\nof our knowledge, this work marks the first instance of extending the GDP\nframework to accommodate general Riemannian manifolds, encompassing curved\nspaces, and circumventing the reliance on tangent space summaries. We provide a\nsimple algorithm to evaluate the privacy budget $\\mu$ on any one-dimensional\nmanifold and introduce a versatile Markov Chain Monte Carlo (MCMC)-based\nalgorithm to calculate $\\mu$ on any Riemannian manifold with constant\ncurvature. Through simulations on one of the most prevalent manifolds in\nstatistics, the unit sphere $S^d$, we demonstrate the superior utility of our\nRiemannian Gaussian mechanism in comparison to the previously proposed\nRiemannian Laplace mechanism for implementing GDP.","PeriodicalId":501323,"journal":{"name":"arXiv - STAT - Other Statistics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gaussian Differential Privacy on Riemannian Manifolds\",\"authors\":\"Yangdi Jiang, Xiaotian Chang, Yi Liu, Lei Ding, Linglong Kong, Bei Jiang\",\"doi\":\"arxiv-2311.10101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop an advanced approach for extending Gaussian Differential Privacy\\n(GDP) to general Riemannian manifolds. The concept of GDP stands out as a\\nprominent privacy definition that strongly warrants extension to manifold\\nsettings, due to its central limit properties. By harnessing the power of the\\nrenowned Bishop-Gromov theorem in geometric analysis, we propose a Riemannian\\nGaussian distribution that integrates the Riemannian distance, allowing us to\\nachieve GDP in Riemannian manifolds with bounded Ricci curvature. To the best\\nof our knowledge, this work marks the first instance of extending the GDP\\nframework to accommodate general Riemannian manifolds, encompassing curved\\nspaces, and circumventing the reliance on tangent space summaries. We provide a\\nsimple algorithm to evaluate the privacy budget $\\\\mu$ on any one-dimensional\\nmanifold and introduce a versatile Markov Chain Monte Carlo (MCMC)-based\\nalgorithm to calculate $\\\\mu$ on any Riemannian manifold with constant\\ncurvature. Through simulations on one of the most prevalent manifolds in\\nstatistics, the unit sphere $S^d$, we demonstrate the superior utility of our\\nRiemannian Gaussian mechanism in comparison to the previously proposed\\nRiemannian Laplace mechanism for implementing GDP.\",\"PeriodicalId\":501323,\"journal\":{\"name\":\"arXiv - STAT - Other Statistics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Other Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2311.10101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Other Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.10101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一种将高斯微分隐私(GDP)扩展到一般黎曼流形的先进方法。GDP的概念作为一个突出的隐私定义脱颖而出,由于其中心限制属性,它强烈要求将其扩展到多种设置。通过利用几何分析中著名的毕晓普-格罗莫夫定理的力量,我们提出了一个黎曼-高斯分布,它集成了黎曼距离,使我们能够在有界里奇曲率的黎曼流形中实现GDP。据我们所知,这项工作标志着扩展gdp框架以适应一般黎曼流形的第一个实例,包括曲线空间,并绕过对切空间总结的依赖。我们提供了一种简单的算法来计算任意一维流形上的隐私预算$\mu$,并引入了一种基于通用马尔可夫链蒙特卡罗(MCMC)的算法来计算任意具有恒定曲率的黎曼流形上的$\mu$。通过对最流行的流形统计之一,单位球S^d的模拟,我们证明了与之前提出的黎曼拉普拉斯机制相比,我们的黎曼高斯机制在实现GDP方面的优越效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gaussian Differential Privacy on Riemannian Manifolds
We develop an advanced approach for extending Gaussian Differential Privacy (GDP) to general Riemannian manifolds. The concept of GDP stands out as a prominent privacy definition that strongly warrants extension to manifold settings, due to its central limit properties. By harnessing the power of the renowned Bishop-Gromov theorem in geometric analysis, we propose a Riemannian Gaussian distribution that integrates the Riemannian distance, allowing us to achieve GDP in Riemannian manifolds with bounded Ricci curvature. To the best of our knowledge, this work marks the first instance of extending the GDP framework to accommodate general Riemannian manifolds, encompassing curved spaces, and circumventing the reliance on tangent space summaries. We provide a simple algorithm to evaluate the privacy budget $\mu$ on any one-dimensional manifold and introduce a versatile Markov Chain Monte Carlo (MCMC)-based algorithm to calculate $\mu$ on any Riemannian manifold with constant curvature. Through simulations on one of the most prevalent manifolds in statistics, the unit sphere $S^d$, we demonstrate the superior utility of our Riemannian Gaussian mechanism in comparison to the previously proposed Riemannian Laplace mechanism for implementing GDP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信