过程跟踪和其他N=1研究的p值

Matias Lopez, Jake Bowers
{"title":"过程跟踪和其他N=1研究的p值","authors":"Matias Lopez, Jake Bowers","doi":"arxiv-2310.13826","DOIUrl":null,"url":null,"abstract":"The paper introduces a \\(p\\)-value that summarizes the evidence against a\nrival causal theory that explains an observed outcome in a single case. We show\nhow to represent the probability distribution characterizing a theorized rival\nhypothesis (the null) in the absence of randomization of treatment and when\ncounting on qualitative data, for instance when conducting process tracing. As\nin Fisher's \\autocite*{fisher1935design} original design, our \\(p\\)-value\nindicates how frequently one would find the same observations or even more\nfavorable observations under a theory that is compatible with our observations\nbut antagonistic to the working hypothesis. We also present an extension that\nallows researchers assess the sensitivity of their results to confirmation\nbias. Finally, we illustrate the application of our hypothesis test using the\nstudy by Snow \\autocite*{Snow1855} about the cause of Cholera in Soho, a\nclassic in Process Tracing, Epidemiology, and Microbiology. Our framework suits\nany type of case studies and evidence, such as data from interviews, archives,\nor participant observation.","PeriodicalId":501323,"journal":{"name":"arXiv - STAT - Other Statistics","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A p-value for Process Tracing and other N=1 Studies\",\"authors\":\"Matias Lopez, Jake Bowers\",\"doi\":\"arxiv-2310.13826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper introduces a \\\\(p\\\\)-value that summarizes the evidence against a\\nrival causal theory that explains an observed outcome in a single case. We show\\nhow to represent the probability distribution characterizing a theorized rival\\nhypothesis (the null) in the absence of randomization of treatment and when\\ncounting on qualitative data, for instance when conducting process tracing. As\\nin Fisher's \\\\autocite*{fisher1935design} original design, our \\\\(p\\\\)-value\\nindicates how frequently one would find the same observations or even more\\nfavorable observations under a theory that is compatible with our observations\\nbut antagonistic to the working hypothesis. We also present an extension that\\nallows researchers assess the sensitivity of their results to confirmation\\nbias. Finally, we illustrate the application of our hypothesis test using the\\nstudy by Snow \\\\autocite*{Snow1855} about the cause of Cholera in Soho, a\\nclassic in Process Tracing, Epidemiology, and Microbiology. Our framework suits\\nany type of case studies and evidence, such as data from interviews, archives,\\nor participant observation.\",\"PeriodicalId\":501323,\"journal\":{\"name\":\"arXiv - STAT - Other Statistics\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Other Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2310.13826\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Other Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2310.13826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文引入了一个\(p\)值,该值概括了反对解释单个案例中观察到的结果的到达因果理论的证据。我们展示了在没有随机化处理和依赖定性数据(例如在进行过程跟踪时)的情况下,如何表示表征理论化的竞争假设(零)的概率分布。在Fisher的\autocite*{fisher1935design}原始设计中,我们的\(p\)值表示在与我们的观察相一致但与工作假设相反的理论下,人们发现相同观察结果甚至更有利观察结果的频率。我们还提出了一个扩展,允许研究人员评估他们的结果对确认偏倚的敏感性。最后,我们用Snow \autocite*{Snow1855}关于Soho区霍乱病因的研究来说明我们的假设检验的应用,这是过程追踪、流行病学和微生物学的经典研究。我们的框架适用于任何类型的案例研究和证据,例如来自访谈、档案或参与者观察的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A p-value for Process Tracing and other N=1 Studies
The paper introduces a \(p\)-value that summarizes the evidence against a rival causal theory that explains an observed outcome in a single case. We show how to represent the probability distribution characterizing a theorized rival hypothesis (the null) in the absence of randomization of treatment and when counting on qualitative data, for instance when conducting process tracing. As in Fisher's \autocite*{fisher1935design} original design, our \(p\)-value indicates how frequently one would find the same observations or even more favorable observations under a theory that is compatible with our observations but antagonistic to the working hypothesis. We also present an extension that allows researchers assess the sensitivity of their results to confirmation bias. Finally, we illustrate the application of our hypothesis test using the study by Snow \autocite*{Snow1855} about the cause of Cholera in Soho, a classic in Process Tracing, Epidemiology, and Microbiology. Our framework suits any type of case studies and evidence, such as data from interviews, archives, or participant observation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信