分数球受限双曲扩散随机场

Nikolai Leonenko, Andriy Olenko, Jayme Vaz
{"title":"分数球受限双曲扩散随机场","authors":"Nikolai Leonenko, Andriy Olenko, Jayme Vaz","doi":"arxiv-2310.03933","DOIUrl":null,"url":null,"abstract":"The paper investigates solutions of the fractional hyperbolic diffusion\nequation in its most general form with two fractional derivatives of distinct\norders. The solutions are given as spatial-temporal homogeneous and isotropic\nrandom fields and their spherical restrictions are studied. The spectral\nrepresentations of these fields are derived and the associated angular spectrum\nis analysed. The obtained mathematical results are illustrated by numerical\nexamples. In addition, the numerical investigations assess the dependence of\nthe covariance structure and other properties of these fields on the orders of\nfractional derivatives.","PeriodicalId":501323,"journal":{"name":"arXiv - STAT - Other Statistics","volume":"20 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Fractional Spherically Restricted Hyperbolic Diffusion Random Field\",\"authors\":\"Nikolai Leonenko, Andriy Olenko, Jayme Vaz\",\"doi\":\"arxiv-2310.03933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper investigates solutions of the fractional hyperbolic diffusion\\nequation in its most general form with two fractional derivatives of distinct\\norders. The solutions are given as spatial-temporal homogeneous and isotropic\\nrandom fields and their spherical restrictions are studied. The spectral\\nrepresentations of these fields are derived and the associated angular spectrum\\nis analysed. The obtained mathematical results are illustrated by numerical\\nexamples. In addition, the numerical investigations assess the dependence of\\nthe covariance structure and other properties of these fields on the orders of\\nfractional derivatives.\",\"PeriodicalId\":501323,\"journal\":{\"name\":\"arXiv - STAT - Other Statistics\",\"volume\":\"20 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Other Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2310.03933\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Other Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2310.03933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了具有两个不同阶数的分数阶导数的分数阶双曲扩散方程的最一般形式的解。给出了这些问题的时空齐次随机场和各向同性随机场的解,并研究了它们的球面限制。导出了这些场的光谱表示,并分析了相关的角光谱。通过数值算例说明了所得的数学结果。此外,数值研究评估了这些场的协方差结构和其他性质对阶分数阶导数的依赖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Fractional Spherically Restricted Hyperbolic Diffusion Random Field
The paper investigates solutions of the fractional hyperbolic diffusion equation in its most general form with two fractional derivatives of distinct orders. The solutions are given as spatial-temporal homogeneous and isotropic random fields and their spherical restrictions are studied. The spectral representations of these fields are derived and the associated angular spectrum is analysed. The obtained mathematical results are illustrated by numerical examples. In addition, the numerical investigations assess the dependence of the covariance structure and other properties of these fields on the orders of fractional derivatives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信