降低海平面上升预测的不确定性:一种空间变异感知方法

Subhankar Ghosh, Shuai An, Arun Sharma, Jayant Gupta, Shashi Shekhar, Aneesh Subramanian
{"title":"降低海平面上升预测的不确定性:一种空间变异感知方法","authors":"Subhankar Ghosh, Shuai An, Arun Sharma, Jayant Gupta, Shashi Shekhar, Aneesh Subramanian","doi":"arxiv-2310.15179","DOIUrl":null,"url":null,"abstract":"Given multi-model ensemble climate projections, the goal is to accurately and\nreliably predict future sea-level rise while lowering the uncertainty. This\nproblem is important because sea-level rise affects millions of people in\ncoastal communities and beyond due to climate change's impacts on polar ice\nsheets and the ocean. This problem is challenging due to spatial variability\nand unknowns such as possible tipping points (e.g., collapse of Greenland or\nWest Antarctic ice-shelf), climate feedback loops (e.g., clouds, permafrost\nthawing), future policy decisions, and human actions. Most existing climate\nmodeling approaches use the same set of weights globally, during either\nregression or deep learning to combine different climate projections. Such\napproaches are inadequate when different regions require different weighting\nschemes for accurate and reliable sea-level rise predictions. This paper\nproposes a zonal regression model which addresses spatial variability and model\ninter-dependency. Experimental results show more reliable predictions using the\nweights learned via this approach on a regional scale.","PeriodicalId":501323,"journal":{"name":"arXiv - STAT - Other Statistics","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reducing Uncertainty in Sea-level Rise Prediction: A Spatial-variability-aware Approach\",\"authors\":\"Subhankar Ghosh, Shuai An, Arun Sharma, Jayant Gupta, Shashi Shekhar, Aneesh Subramanian\",\"doi\":\"arxiv-2310.15179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given multi-model ensemble climate projections, the goal is to accurately and\\nreliably predict future sea-level rise while lowering the uncertainty. This\\nproblem is important because sea-level rise affects millions of people in\\ncoastal communities and beyond due to climate change's impacts on polar ice\\nsheets and the ocean. This problem is challenging due to spatial variability\\nand unknowns such as possible tipping points (e.g., collapse of Greenland or\\nWest Antarctic ice-shelf), climate feedback loops (e.g., clouds, permafrost\\nthawing), future policy decisions, and human actions. Most existing climate\\nmodeling approaches use the same set of weights globally, during either\\nregression or deep learning to combine different climate projections. Such\\napproaches are inadequate when different regions require different weighting\\nschemes for accurate and reliable sea-level rise predictions. This paper\\nproposes a zonal regression model which addresses spatial variability and model\\ninter-dependency. Experimental results show more reliable predictions using the\\nweights learned via this approach on a regional scale.\",\"PeriodicalId\":501323,\"journal\":{\"name\":\"arXiv - STAT - Other Statistics\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Other Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2310.15179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Other Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2310.15179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定多模式集合气候预测,目标是准确可靠地预测未来海平面上升,同时降低不确定性。这个问题很重要,因为由于气候变化对极地冰原和海洋的影响,海平面上升影响到沿海地区及其他地区的数百万人。由于空间变动性和未知因素,如可能的临界点(如格陵兰岛或南极西部冰架的崩塌)、气候反馈循环(如云、永久冻土融化)、未来的政策决定和人类行为,这一问题具有挑战性。大多数现有的气候建模方法在回归或深度学习期间使用相同的全局权重集来组合不同的气候预测。当不同地区需要不同的权重方案来进行准确可靠的海平面上升预测时,这种方法是不够的。本文提出了一个考虑空间变异性和模型相互依赖性的区域回归模型。实验结果表明,在区域尺度上使用通过该方法获得的权重更可靠的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reducing Uncertainty in Sea-level Rise Prediction: A Spatial-variability-aware Approach
Given multi-model ensemble climate projections, the goal is to accurately and reliably predict future sea-level rise while lowering the uncertainty. This problem is important because sea-level rise affects millions of people in coastal communities and beyond due to climate change's impacts on polar ice sheets and the ocean. This problem is challenging due to spatial variability and unknowns such as possible tipping points (e.g., collapse of Greenland or West Antarctic ice-shelf), climate feedback loops (e.g., clouds, permafrost thawing), future policy decisions, and human actions. Most existing climate modeling approaches use the same set of weights globally, during either regression or deep learning to combine different climate projections. Such approaches are inadequate when different regions require different weighting schemes for accurate and reliable sea-level rise predictions. This paper proposes a zonal regression model which addresses spatial variability and model inter-dependency. Experimental results show more reliable predictions using the weights learned via this approach on a regional scale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信