{"title":"骨组织工程用羧甲基纤维素基复合材料的研究进展","authors":"Ganesan Priya, Uttamchand Narendra Kumar, Balaraman Madhan, Inderchand Manjubala","doi":"20.00045","DOIUrl":null,"url":null,"abstract":"The present study focuses on the development of carboxymethylcellulose (CMC)–biphasic calcium phosphate (BCP) composite scaffolds through the freeze-drying process for bone tissue engineering applications. Citric acid or fumaric acid was added as the cross-linker of CMC to improve the stability of composite scaffolds. The effect of change in freezing temperature (−20, −40 or −80°C) on the pore morphology, swelling ability and mechanical properties of composite scaffolds was studied. Cross-linked scaffolds showed an increased thermal degradation temperature compared with non-cross-linked scaffolds. All the composite scaffolds showed a porous structure with homogeneous blending of CMC and BCP. Cross-linked scaffolds showed appreciable swelling ability and stability in phosphate-buffered saline, while non-cross-linked scaffolds were unstable for 24 h. Cross-linked scaffolds had lower compressive strength than non-cross-linked scaffolds under dry conditions. However, in the hydrated state, only citric acid-cross-linked scaffolds were stable with improved compressive strength of 64 ± 4, 57 ± 4 and 67 ± 4 kPa when processed at −20, −40 and −80°C, respectively. Furthermore, three-dimensional culture of Saos-2 cells on citric acid-cross-linked scaffolds showed their suitability for cell proliferation and osteogenic differentiation. Therefore, citric acid-cross-linked CMC–BCP composite scaffolds may be promising scaffolds for bone tissue engineering applications.","PeriodicalId":48847,"journal":{"name":"Bioinspired Biomimetic and Nanobiomaterials","volume":"45 12","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of carboxymethylcellulose based composites for bone tissue engineering\",\"authors\":\"Ganesan Priya, Uttamchand Narendra Kumar, Balaraman Madhan, Inderchand Manjubala\",\"doi\":\"20.00045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study focuses on the development of carboxymethylcellulose (CMC)–biphasic calcium phosphate (BCP) composite scaffolds through the freeze-drying process for bone tissue engineering applications. Citric acid or fumaric acid was added as the cross-linker of CMC to improve the stability of composite scaffolds. The effect of change in freezing temperature (−20, −40 or −80°C) on the pore morphology, swelling ability and mechanical properties of composite scaffolds was studied. Cross-linked scaffolds showed an increased thermal degradation temperature compared with non-cross-linked scaffolds. All the composite scaffolds showed a porous structure with homogeneous blending of CMC and BCP. Cross-linked scaffolds showed appreciable swelling ability and stability in phosphate-buffered saline, while non-cross-linked scaffolds were unstable for 24 h. Cross-linked scaffolds had lower compressive strength than non-cross-linked scaffolds under dry conditions. However, in the hydrated state, only citric acid-cross-linked scaffolds were stable with improved compressive strength of 64 ± 4, 57 ± 4 and 67 ± 4 kPa when processed at −20, −40 and −80°C, respectively. Furthermore, three-dimensional culture of Saos-2 cells on citric acid-cross-linked scaffolds showed their suitability for cell proliferation and osteogenic differentiation. Therefore, citric acid-cross-linked CMC–BCP composite scaffolds may be promising scaffolds for bone tissue engineering applications.\",\"PeriodicalId\":48847,\"journal\":{\"name\":\"Bioinspired Biomimetic and Nanobiomaterials\",\"volume\":\"45 12\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinspired Biomimetic and Nanobiomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/20.00045\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspired Biomimetic and Nanobiomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/20.00045","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Development of carboxymethylcellulose based composites for bone tissue engineering
The present study focuses on the development of carboxymethylcellulose (CMC)–biphasic calcium phosphate (BCP) composite scaffolds through the freeze-drying process for bone tissue engineering applications. Citric acid or fumaric acid was added as the cross-linker of CMC to improve the stability of composite scaffolds. The effect of change in freezing temperature (−20, −40 or −80°C) on the pore morphology, swelling ability and mechanical properties of composite scaffolds was studied. Cross-linked scaffolds showed an increased thermal degradation temperature compared with non-cross-linked scaffolds. All the composite scaffolds showed a porous structure with homogeneous blending of CMC and BCP. Cross-linked scaffolds showed appreciable swelling ability and stability in phosphate-buffered saline, while non-cross-linked scaffolds were unstable for 24 h. Cross-linked scaffolds had lower compressive strength than non-cross-linked scaffolds under dry conditions. However, in the hydrated state, only citric acid-cross-linked scaffolds were stable with improved compressive strength of 64 ± 4, 57 ± 4 and 67 ± 4 kPa when processed at −20, −40 and −80°C, respectively. Furthermore, three-dimensional culture of Saos-2 cells on citric acid-cross-linked scaffolds showed their suitability for cell proliferation and osteogenic differentiation. Therefore, citric acid-cross-linked CMC–BCP composite scaffolds may be promising scaffolds for bone tissue engineering applications.
期刊介绍:
Bioinspired, biomimetic and nanobiomaterials are emerging as the most promising area of research within the area of biological materials science and engineering. The technological significance of this area is immense for applications as diverse as tissue engineering and drug delivery biosystems to biomimicked sensors and optical devices.
Bioinspired, Biomimetic and Nanobiomaterials provides a unique scholarly forum for discussion and reporting of structure sensitive functional properties of nature inspired materials.