用马尔可夫树建模多元极值分布*

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Shuang Hu, Zuoxiang Peng, Johan Segers
{"title":"用马尔可夫树建模多元极值分布*","authors":"Shuang Hu, Zuoxiang Peng, Johan Segers","doi":"10.1111/sjos.12698","DOIUrl":null,"url":null,"abstract":"Multivariate extreme value distributions are a common choice for modelling multivariate extremes. In high dimensions, however, the construction of flexible and parsimonious models is challenging. We propose to combine bivariate max-stable distributions into a Markov random field with respect to a tree. Although in general not max-stable itself, this Markov tree is attracted by a multivariate max-stable distribution. The latter serves as a tree-based approximation to an unknown max-stable distribution with the given bivariate distributions as margins. Given data, we learn an appropriate tree structure by Prim's algorithm with estimated pairwise upper tail dependence coefficients as edge weights. The distributions of pairs of connected variables can be fitted in various ways. The resulting tree-structured max-stable distribution allows for inference on rare event probabilities, as illustrated on river discharge data from the upper Danube basin.","PeriodicalId":49567,"journal":{"name":"Scandinavian Journal of Statistics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Modelling multivariate extreme value distributions via Markov trees*\",\"authors\":\"Shuang Hu, Zuoxiang Peng, Johan Segers\",\"doi\":\"10.1111/sjos.12698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multivariate extreme value distributions are a common choice for modelling multivariate extremes. In high dimensions, however, the construction of flexible and parsimonious models is challenging. We propose to combine bivariate max-stable distributions into a Markov random field with respect to a tree. Although in general not max-stable itself, this Markov tree is attracted by a multivariate max-stable distribution. The latter serves as a tree-based approximation to an unknown max-stable distribution with the given bivariate distributions as margins. Given data, we learn an appropriate tree structure by Prim's algorithm with estimated pairwise upper tail dependence coefficients as edge weights. The distributions of pairs of connected variables can be fitted in various ways. The resulting tree-structured max-stable distribution allows for inference on rare event probabilities, as illustrated on river discharge data from the upper Danube basin.\",\"PeriodicalId\":49567,\"journal\":{\"name\":\"Scandinavian Journal of Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scandinavian Journal of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/sjos.12698\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/sjos.12698","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 4

摘要

多变量极值分布是建模多变量极值的常用选择。然而,在高维中,构建灵活且简洁的模型是一项挑战。我们提出将二元最大稳定分布组合成一个关于树的马尔可夫随机场。虽然马尔可夫树本身通常不是极大稳定的,但它被多元极大稳定分布所吸引。后者以给定的二元分布作为边界,作为未知最大稳定分布的基于树的近似。给定数据,我们用估计的两两上尾相关系数作为边权,通过Prim算法学习到合适的树结构。连接变量对的分布可以用各种方法拟合。由此产生的树状结构最大稳定分布允许对罕见事件概率进行推断,如多瑙河上游流域的河流流量数据所示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling multivariate extreme value distributions via Markov trees*
Multivariate extreme value distributions are a common choice for modelling multivariate extremes. In high dimensions, however, the construction of flexible and parsimonious models is challenging. We propose to combine bivariate max-stable distributions into a Markov random field with respect to a tree. Although in general not max-stable itself, this Markov tree is attracted by a multivariate max-stable distribution. The latter serves as a tree-based approximation to an unknown max-stable distribution with the given bivariate distributions as margins. Given data, we learn an appropriate tree structure by Prim's algorithm with estimated pairwise upper tail dependence coefficients as edge weights. The distributions of pairs of connected variables can be fitted in various ways. The resulting tree-structured max-stable distribution allows for inference on rare event probabilities, as illustrated on river discharge data from the upper Danube basin.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scandinavian Journal of Statistics
Scandinavian Journal of Statistics 数学-统计学与概率论
CiteScore
1.80
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The Scandinavian Journal of Statistics is internationally recognised as one of the leading statistical journals in the world. It was founded in 1974 by four Scandinavian statistical societies. Today more than eighty per cent of the manuscripts are submitted from outside Scandinavia. It is an international journal devoted to reporting significant and innovative original contributions to statistical methodology, both theory and applications. The journal specializes in statistical modelling showing particular appreciation of the underlying substantive research problems. The emergence of specialized methods for analysing longitudinal and spatial data is just one example of an area of important methodological development in which the Scandinavian Journal of Statistics has a particular niche.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信