将pde引入JAX,具有正向和反向模式的自动区分

Ivan Yashchuk
{"title":"将pde引入JAX,具有正向和反向模式的自动区分","authors":"Ivan Yashchuk","doi":"arxiv-2309.07137","DOIUrl":null,"url":null,"abstract":"Partial differential equations (PDEs) are used to describe a variety of\nphysical phenomena. Often these equations do not have analytical solutions and\nnumerical approximations are used instead. One of the common methods to solve\nPDEs is the finite element method. Computing derivative information of the\nsolution with respect to the input parameters is important in many tasks in\nscientific computing. We extend JAX automatic differentiation library with an\ninterface to Firedrake finite element library. High-level symbolic\nrepresentation of PDEs allows bypassing differentiating through low-level\npossibly many iterations of the underlying nonlinear solvers. Differentiating\nthrough Firedrake solvers is done using tangent-linear and adjoint equations.\nThis enables the efficient composition of finite element solvers with arbitrary\ndifferentiable programs. The code is available at\ngithub.com/IvanYashchuk/jax-firedrake.","PeriodicalId":501256,"journal":{"name":"arXiv - CS - Mathematical Software","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bringing PDEs to JAX with forward and reverse modes automatic differentiation\",\"authors\":\"Ivan Yashchuk\",\"doi\":\"arxiv-2309.07137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Partial differential equations (PDEs) are used to describe a variety of\\nphysical phenomena. Often these equations do not have analytical solutions and\\nnumerical approximations are used instead. One of the common methods to solve\\nPDEs is the finite element method. Computing derivative information of the\\nsolution with respect to the input parameters is important in many tasks in\\nscientific computing. We extend JAX automatic differentiation library with an\\ninterface to Firedrake finite element library. High-level symbolic\\nrepresentation of PDEs allows bypassing differentiating through low-level\\npossibly many iterations of the underlying nonlinear solvers. Differentiating\\nthrough Firedrake solvers is done using tangent-linear and adjoint equations.\\nThis enables the efficient composition of finite element solvers with arbitrary\\ndifferentiable programs. The code is available at\\ngithub.com/IvanYashchuk/jax-firedrake.\",\"PeriodicalId\":501256,\"journal\":{\"name\":\"arXiv - CS - Mathematical Software\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Mathematical Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2309.07137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Mathematical Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2309.07137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

偏微分方程(PDEs)被用来描述各种物理现象。通常这些方程没有解析解,而用数值近似代替。求解偏微分方程的常用方法之一是有限元法。在科学计算的许多任务中,计算解对输入参数的导数信息是很重要的。我们扩展了JAX自动微分库,并提供了Firedrake有限元库的接口。pde的高级符号表示允许通过底层非线性求解器的低级可能多次迭代来绕过微分。通过Firedrake求解器进行微分,使用切线方程和伴随方程。这使得有限元求解器与任意可微程序的有效组合成为可能。代码可以在atgithub.com/IvanYashchuk/jax-firedrake上找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bringing PDEs to JAX with forward and reverse modes automatic differentiation
Partial differential equations (PDEs) are used to describe a variety of physical phenomena. Often these equations do not have analytical solutions and numerical approximations are used instead. One of the common methods to solve PDEs is the finite element method. Computing derivative information of the solution with respect to the input parameters is important in many tasks in scientific computing. We extend JAX automatic differentiation library with an interface to Firedrake finite element library. High-level symbolic representation of PDEs allows bypassing differentiating through low-level possibly many iterations of the underlying nonlinear solvers. Differentiating through Firedrake solvers is done using tangent-linear and adjoint equations. This enables the efficient composition of finite element solvers with arbitrary differentiable programs. The code is available at github.com/IvanYashchuk/jax-firedrake.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信