基于二进制压缩的层次低秩算法

Ronald Kriemann
{"title":"基于二进制压缩的层次低秩算法","authors":"Ronald Kriemann","doi":"arxiv-2308.10960","DOIUrl":null,"url":null,"abstract":"With lowrank approximation the storage requirements for dense data are\nreduced down to linear complexity and with the addition of hierarchy this also\nworks for data without global lowrank properties. However, the lowrank factors\nitself are often still stored using double precision numbers. Newer approaches\nexploit the different IEEE754 floating point formats available nowadays in a\nmixed precision approach. However, these formats show a significant gap in\nstorage (and accuracy), e.g. between half, single and double precision. We\ntherefore look beyond these standard formats and use adaptive compression for\nstoring the lowrank and dense data and investigate how that affects the\narithmetic of such matrices.","PeriodicalId":501256,"journal":{"name":"arXiv - CS - Mathematical Software","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical Lowrank Arithmetic with Binary Compression\",\"authors\":\"Ronald Kriemann\",\"doi\":\"arxiv-2308.10960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With lowrank approximation the storage requirements for dense data are\\nreduced down to linear complexity and with the addition of hierarchy this also\\nworks for data without global lowrank properties. However, the lowrank factors\\nitself are often still stored using double precision numbers. Newer approaches\\nexploit the different IEEE754 floating point formats available nowadays in a\\nmixed precision approach. However, these formats show a significant gap in\\nstorage (and accuracy), e.g. between half, single and double precision. We\\ntherefore look beyond these standard formats and use adaptive compression for\\nstoring the lowrank and dense data and investigate how that affects the\\narithmetic of such matrices.\",\"PeriodicalId\":501256,\"journal\":{\"name\":\"arXiv - CS - Mathematical Software\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Mathematical Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2308.10960\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Mathematical Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2308.10960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过低秩近似,密集数据的存储需求降低到线性复杂性,并且随着层次结构的增加,这也适用于没有全局低秩属性的数据。然而,低秩因子本身通常仍然使用双精度数存储。较新的方法利用了不同的IEEE754浮点格式,目前在混合精度方法中可用。然而,这些格式在存储(和精度)上有很大的差距,例如在半精度、单精度和双精度之间。因此,我们超越这些标准格式,并使用自适应压缩来存储低秩和密集的数据,并研究它如何影响这些矩阵的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical Lowrank Arithmetic with Binary Compression
With lowrank approximation the storage requirements for dense data are reduced down to linear complexity and with the addition of hierarchy this also works for data without global lowrank properties. However, the lowrank factors itself are often still stored using double precision numbers. Newer approaches exploit the different IEEE754 floating point formats available nowadays in a mixed precision approach. However, these formats show a significant gap in storage (and accuracy), e.g. between half, single and double precision. We therefore look beyond these standard formats and use adaptive compression for storing the lowrank and dense data and investigate how that affects the arithmetic of such matrices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信