Samuel Valiquette, Gwladys Toulemonde, Jean Peyhardi, Éric Marchand, Frédéric Mortier
{"title":"泊松混合分布的渐近尾部性质","authors":"Samuel Valiquette, Gwladys Toulemonde, Jean Peyhardi, Éric Marchand, Frédéric Mortier","doi":"10.1002/sta4.622","DOIUrl":null,"url":null,"abstract":"Count data are omnipresent in many applied fields, often with overdispersion. With mixtures of Poisson distributions representing an elegant and appealing modelling strategy, we focus here on how the tail behaviour of the mixing distribution is related to the tail of the resulting Poisson mixture. We define five sets of mixing distributions, and we identify for each case whenever the Poisson mixture is in, close to or far from a domain of attraction of maxima. We also characterize how the Poisson mixture behaves similarly to a standard Poisson distribution when the mixing distribution has a finite support. Finally, we study, both analytically and numerically, how goodness‐of‐fit can be assessed with the inspection of tail behaviour.","PeriodicalId":56159,"journal":{"name":"Stat","volume":"5 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic tail properties of Poisson mixture distributions\",\"authors\":\"Samuel Valiquette, Gwladys Toulemonde, Jean Peyhardi, Éric Marchand, Frédéric Mortier\",\"doi\":\"10.1002/sta4.622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Count data are omnipresent in many applied fields, often with overdispersion. With mixtures of Poisson distributions representing an elegant and appealing modelling strategy, we focus here on how the tail behaviour of the mixing distribution is related to the tail of the resulting Poisson mixture. We define five sets of mixing distributions, and we identify for each case whenever the Poisson mixture is in, close to or far from a domain of attraction of maxima. We also characterize how the Poisson mixture behaves similarly to a standard Poisson distribution when the mixing distribution has a finite support. Finally, we study, both analytically and numerically, how goodness‐of‐fit can be assessed with the inspection of tail behaviour.\",\"PeriodicalId\":56159,\"journal\":{\"name\":\"Stat\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stat\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/sta4.622\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stat","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/sta4.622","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Asymptotic tail properties of Poisson mixture distributions
Count data are omnipresent in many applied fields, often with overdispersion. With mixtures of Poisson distributions representing an elegant and appealing modelling strategy, we focus here on how the tail behaviour of the mixing distribution is related to the tail of the resulting Poisson mixture. We define five sets of mixing distributions, and we identify for each case whenever the Poisson mixture is in, close to or far from a domain of attraction of maxima. We also characterize how the Poisson mixture behaves similarly to a standard Poisson distribution when the mixing distribution has a finite support. Finally, we study, both analytically and numerically, how goodness‐of‐fit can be assessed with the inspection of tail behaviour.
StatDecision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.10
自引率
0.00%
发文量
85
期刊介绍:
Stat is an innovative electronic journal for the rapid publication of novel and topical research results, publishing compact articles of the highest quality in all areas of statistical endeavour. Its purpose is to provide a means of rapid sharing of important new theoretical, methodological and applied research. Stat is a joint venture between the International Statistical Institute and Wiley-Blackwell.
Stat is characterised by:
• Speed - a high-quality review process that aims to reach a decision within 20 days of submission.
• Concision - a maximum article length of 10 pages of text, not including references.
• Supporting materials - inclusion of electronic supporting materials including graphs, video, software, data and images.
• Scope - addresses all areas of statistics and interdisciplinary areas.
Stat is a scientific journal for the international community of statisticians and researchers and practitioners in allied quantitative disciplines.