Jinhong Li, Qiuping Wang, Patrick P. C. Lee, Chao Shi
{"title":"云块存储工作负载的深度比较分析:发现和启示","authors":"Jinhong Li, Qiuping Wang, Patrick P. C. Lee, Chao Shi","doi":"https://dl.acm.org/doi/10.1145/3572779","DOIUrl":null,"url":null,"abstract":"<p>Cloud block storage systems support diverse types of applications in modern cloud services. Characterizing their input/output (I/O) activities is critical for guiding better system designs and optimizations. In this article, we present an in-depth comparative analysis of production cloud block storage workloads through the block-level I/O traces of billions of I/O requests collected from two production systems, Alibaba Cloud and Tencent Cloud Block Storage. We study their characteristics of load intensities, spatial patterns, and temporal patterns. We also compare the cloud block storage workloads with the notable public block-level I/O workloads from the enterprise data centers at Microsoft Research Cambridge, and we identify the commonalities and differences of the three sources of traces. To this end, we provide 6 findings through the high-level analysis and 16 findings through the detailed analysis on load intensity, spatial patterns, and temporal patterns. We discuss the implications of our findings on load balancing, cache efficiency, and storage cluster management in cloud block storage systems.</p>","PeriodicalId":49113,"journal":{"name":"ACM Transactions on Storage","volume":"53 7","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An In-depth Comparative Analysis of Cloud Block Storage Workloads: Findings and Implications\",\"authors\":\"Jinhong Li, Qiuping Wang, Patrick P. C. Lee, Chao Shi\",\"doi\":\"https://dl.acm.org/doi/10.1145/3572779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cloud block storage systems support diverse types of applications in modern cloud services. Characterizing their input/output (I/O) activities is critical for guiding better system designs and optimizations. In this article, we present an in-depth comparative analysis of production cloud block storage workloads through the block-level I/O traces of billions of I/O requests collected from two production systems, Alibaba Cloud and Tencent Cloud Block Storage. We study their characteristics of load intensities, spatial patterns, and temporal patterns. We also compare the cloud block storage workloads with the notable public block-level I/O workloads from the enterprise data centers at Microsoft Research Cambridge, and we identify the commonalities and differences of the three sources of traces. To this end, we provide 6 findings through the high-level analysis and 16 findings through the detailed analysis on load intensity, spatial patterns, and temporal patterns. We discuss the implications of our findings on load balancing, cache efficiency, and storage cluster management in cloud block storage systems.</p>\",\"PeriodicalId\":49113,\"journal\":{\"name\":\"ACM Transactions on Storage\",\"volume\":\"53 7\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Storage\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3572779\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Storage","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3572779","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
An In-depth Comparative Analysis of Cloud Block Storage Workloads: Findings and Implications
Cloud block storage systems support diverse types of applications in modern cloud services. Characterizing their input/output (I/O) activities is critical for guiding better system designs and optimizations. In this article, we present an in-depth comparative analysis of production cloud block storage workloads through the block-level I/O traces of billions of I/O requests collected from two production systems, Alibaba Cloud and Tencent Cloud Block Storage. We study their characteristics of load intensities, spatial patterns, and temporal patterns. We also compare the cloud block storage workloads with the notable public block-level I/O workloads from the enterprise data centers at Microsoft Research Cambridge, and we identify the commonalities and differences of the three sources of traces. To this end, we provide 6 findings through the high-level analysis and 16 findings through the detailed analysis on load intensity, spatial patterns, and temporal patterns. We discuss the implications of our findings on load balancing, cache efficiency, and storage cluster management in cloud block storage systems.
期刊介绍:
The ACM Transactions on Storage (TOS) is a new journal with an intent to publish original archival papers in the area of storage and closely related disciplines. Articles that appear in TOS will tend either to present new techniques and concepts or to report novel experiences and experiments with practical systems. Storage is a broad and multidisciplinary area that comprises of network protocols, resource management, data backup, replication, recovery, devices, security, and theory of data coding, densities, and low-power. Potential synergies among these fields are expected to open up new research directions.