Kewen He, Yujie An, Yijing Luo, Xiaoguang Liu, Gang Wang
{"title":"FlatLSM:基于pmv存储的写优化lsm树","authors":"Kewen He, Yujie An, Yijing Luo, Xiaoguang Liu, Gang Wang","doi":"https://dl.acm.org/doi/10.1145/3579855","DOIUrl":null,"url":null,"abstract":"<p>The Log-Structured Merge Tree (LSM-Tree) is widely used in key-value (KV) stores because of its excwrite performance. But LSM-Tree-based KV stores still have the overhead of write-ahead log and write stall caused by slow <i>L<sub>0</sub></i> flush and <i>L<sub>0</sub></i>-<i>L<sub>1</sub></i> compaction. New byte-addressable, persistent memory (PM) devices bring an opportunity to improve the write performance of LSM-Tree. Previous studies on PM-based LSM-Tree have not fully exploited PM’s “dual role” of main memory and external storage. In this article, we analyze two strategies of memtables based on PM and the reasons write stall problems occur in the first place. Inspired by the analysis result, we propose FlatLSM, a specially designed flat LSM-Tree for non-volatile memory based KV stores. First, we propose PMTable with separated index and data. The PM Log utilizes the Buffer Log to store KVs of size less than 256B. Second, to solve the write stall problem, FlatLSM merges the volatile memtables and the persistent <i>L<sub>0</sub></i> into large PMTables, which can reduce the depth of LSM-Tree and concentrate I/O bandwidth on <i>L<sub>0</sub></i>-<i>L<sub>1</sub></i> compaction. To mitigate write stall caused by flushing large PMTables to SSD, we propose a parallel flush/compaction algorithm based on KV separation. We implemented FlatLSM based on RocksDB and evaluated its performance on Intel’s latest PM device, the Intel Optane DC PMM with the state-of-the-art PM-based LSM-Tree KV stores, FlatLSM improves the throughput 5.2× on random write workload and 2.55× on YCSB-A.</p>","PeriodicalId":49113,"journal":{"name":"ACM Transactions on Storage","volume":"30 5","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FlatLSM: Write-Optimized LSM-Tree for PM-Based KV Stores\",\"authors\":\"Kewen He, Yujie An, Yijing Luo, Xiaoguang Liu, Gang Wang\",\"doi\":\"https://dl.acm.org/doi/10.1145/3579855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Log-Structured Merge Tree (LSM-Tree) is widely used in key-value (KV) stores because of its excwrite performance. But LSM-Tree-based KV stores still have the overhead of write-ahead log and write stall caused by slow <i>L<sub>0</sub></i> flush and <i>L<sub>0</sub></i>-<i>L<sub>1</sub></i> compaction. New byte-addressable, persistent memory (PM) devices bring an opportunity to improve the write performance of LSM-Tree. Previous studies on PM-based LSM-Tree have not fully exploited PM’s “dual role” of main memory and external storage. In this article, we analyze two strategies of memtables based on PM and the reasons write stall problems occur in the first place. Inspired by the analysis result, we propose FlatLSM, a specially designed flat LSM-Tree for non-volatile memory based KV stores. First, we propose PMTable with separated index and data. The PM Log utilizes the Buffer Log to store KVs of size less than 256B. Second, to solve the write stall problem, FlatLSM merges the volatile memtables and the persistent <i>L<sub>0</sub></i> into large PMTables, which can reduce the depth of LSM-Tree and concentrate I/O bandwidth on <i>L<sub>0</sub></i>-<i>L<sub>1</sub></i> compaction. To mitigate write stall caused by flushing large PMTables to SSD, we propose a parallel flush/compaction algorithm based on KV separation. We implemented FlatLSM based on RocksDB and evaluated its performance on Intel’s latest PM device, the Intel Optane DC PMM with the state-of-the-art PM-based LSM-Tree KV stores, FlatLSM improves the throughput 5.2× on random write workload and 2.55× on YCSB-A.</p>\",\"PeriodicalId\":49113,\"journal\":{\"name\":\"ACM Transactions on Storage\",\"volume\":\"30 5\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Storage\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3579855\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Storage","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3579855","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
摘要
日志结构合并树(Log-Structured Merge Tree, LSM-Tree)以其优异的写入性能被广泛应用于键值存储中。但是基于lsm树的KV存储仍然有提前写日志的开销,并且由于L0刷新和L0- l1压缩速度慢而导致写停顿。新的字节可寻址、持久内存(PM)设备为改进LSM-Tree的写性能带来了机会。以往基于PM的LSM-Tree研究没有充分利用PM的主存和外存的“双重作用”。在本文中,我们首先分析了基于PM的两种memtables策略,并分析了出现write stall问题的原因。受分析结果的启发,我们提出了FlatLSM,这是一种专门为基于非易失性存储器的KV存储设计的扁平lsm树。首先,我们提出了索引和数据分离的PMTable。PM日志利用缓冲区日志存储大小小于256B的kv。其次,为了解决写失速问题,FlatLSM将易失性memtable和持久性L0合并为大型pmtable,这可以减少LSM-Tree的深度,并将I/O带宽集中在L0- l1压缩上。为了减轻由于将大型pmtable刷新到SSD而造成的写失速,我们提出了一种基于KV分离的并行刷新/压缩算法。我们基于RocksDB实现了FlatLSM,并在英特尔最新的PM设备上评估了它的性能,英特尔Optane DC PMM具有最先进的基于PM的LSM-Tree KV存储,FlatLSM在随机写工作负载上提高了5.2倍的吞吐量,在YCSB-A上提高了2.55倍。
FlatLSM: Write-Optimized LSM-Tree for PM-Based KV Stores
The Log-Structured Merge Tree (LSM-Tree) is widely used in key-value (KV) stores because of its excwrite performance. But LSM-Tree-based KV stores still have the overhead of write-ahead log and write stall caused by slow L0 flush and L0-L1 compaction. New byte-addressable, persistent memory (PM) devices bring an opportunity to improve the write performance of LSM-Tree. Previous studies on PM-based LSM-Tree have not fully exploited PM’s “dual role” of main memory and external storage. In this article, we analyze two strategies of memtables based on PM and the reasons write stall problems occur in the first place. Inspired by the analysis result, we propose FlatLSM, a specially designed flat LSM-Tree for non-volatile memory based KV stores. First, we propose PMTable with separated index and data. The PM Log utilizes the Buffer Log to store KVs of size less than 256B. Second, to solve the write stall problem, FlatLSM merges the volatile memtables and the persistent L0 into large PMTables, which can reduce the depth of LSM-Tree and concentrate I/O bandwidth on L0-L1 compaction. To mitigate write stall caused by flushing large PMTables to SSD, we propose a parallel flush/compaction algorithm based on KV separation. We implemented FlatLSM based on RocksDB and evaluated its performance on Intel’s latest PM device, the Intel Optane DC PMM with the state-of-the-art PM-based LSM-Tree KV stores, FlatLSM improves the throughput 5.2× on random write workload and 2.55× on YCSB-A.
期刊介绍:
The ACM Transactions on Storage (TOS) is a new journal with an intent to publish original archival papers in the area of storage and closely related disciplines. Articles that appear in TOS will tend either to present new techniques and concepts or to report novel experiences and experiments with practical systems. Storage is a broad and multidisciplinary area that comprises of network protocols, resource management, data backup, replication, recovery, devices, security, and theory of data coding, densities, and low-power. Potential synergies among these fields are expected to open up new research directions.