工业电路仿真中的降阶多速率方案

IF 1.2 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Bannenberg, Marcus W. F. M., Ciccazzo, Angelo, Günther, Michael
{"title":"工业电路仿真中的降阶多速率方案","authors":"Bannenberg, Marcus W. F. M., Ciccazzo, Angelo, Günther, Michael","doi":"10.1186/s13362-022-00127-w","DOIUrl":null,"url":null,"abstract":"In this paper the industrial application of Reduced Order Multirate (ROMR) schemes is presented. This paper contains the mathematical foundations of the ROMR schemes and elaborates on the construction of these schemes using specific Model Order Reduction (MOR) techniques. Especially the Maximum Entropy Snapshot Sampling method for generating a reduced basis and reduction by Gauß–Newton with Approximated Tensors (GNAT). This basis generation method is also used for generating the basis for the gappy hyper-reduction method used for nonlinear function evaluation. For the multirate integration part, a Backward Differentation Formula approach to integration is used in conjunction with a coupled-slowest-first multirate approach. After introducing the numerical approach to industrial circuit simulation validation experiments are performed. First a simple academic model is used, and then an industrial test case is simulated as presented by STMicroelectronics. A significant speedup in simulation time is achieved whilst accuracy and convergence is kept.","PeriodicalId":44012,"journal":{"name":"Journal of Mathematics in Industry","volume":"79 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduced order multirate schemes in industrial circuit simulation\",\"authors\":\"Bannenberg, Marcus W. F. M., Ciccazzo, Angelo, Günther, Michael\",\"doi\":\"10.1186/s13362-022-00127-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the industrial application of Reduced Order Multirate (ROMR) schemes is presented. This paper contains the mathematical foundations of the ROMR schemes and elaborates on the construction of these schemes using specific Model Order Reduction (MOR) techniques. Especially the Maximum Entropy Snapshot Sampling method for generating a reduced basis and reduction by Gauß–Newton with Approximated Tensors (GNAT). This basis generation method is also used for generating the basis for the gappy hyper-reduction method used for nonlinear function evaluation. For the multirate integration part, a Backward Differentation Formula approach to integration is used in conjunction with a coupled-slowest-first multirate approach. After introducing the numerical approach to industrial circuit simulation validation experiments are performed. First a simple academic model is used, and then an industrial test case is simulated as presented by STMicroelectronics. A significant speedup in simulation time is achieved whilst accuracy and convergence is kept.\",\"PeriodicalId\":44012,\"journal\":{\"name\":\"Journal of Mathematics in Industry\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics in Industry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13362-022-00127-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics in Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13362-022-00127-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了降阶多速率(ROMR)方案的工业应用。本文包含了ROMR方案的数学基础,并详细阐述了这些方案的结构使用特定的模型降阶(MOR)技术。特别是生成约简基的最大熵快照采样方法和Gauß-Newton与近似张量(GNAT)的约简。该基生成方法也用于生成用于非线性函数求值的gappy超约简方法的基。对于多速率积分部分,采用后向微分公式方法与耦合最慢优先多速率方法相结合进行积分。介绍了数值方法在工业电路中的应用,并进行了仿真验证实验。首先采用简单的学术模型,然后采用意法半导体公司提供的工业测试用例进行仿真。在保持精度和收敛性的同时,实现了仿真时间的显著加快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reduced order multirate schemes in industrial circuit simulation
In this paper the industrial application of Reduced Order Multirate (ROMR) schemes is presented. This paper contains the mathematical foundations of the ROMR schemes and elaborates on the construction of these schemes using specific Model Order Reduction (MOR) techniques. Especially the Maximum Entropy Snapshot Sampling method for generating a reduced basis and reduction by Gauß–Newton with Approximated Tensors (GNAT). This basis generation method is also used for generating the basis for the gappy hyper-reduction method used for nonlinear function evaluation. For the multirate integration part, a Backward Differentation Formula approach to integration is used in conjunction with a coupled-slowest-first multirate approach. After introducing the numerical approach to industrial circuit simulation validation experiments are performed. First a simple academic model is used, and then an industrial test case is simulated as presented by STMicroelectronics. A significant speedup in simulation time is achieved whilst accuracy and convergence is kept.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematics in Industry
Journal of Mathematics in Industry MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
5.00
自引率
0.00%
发文量
12
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信