表示极值分布及其最大吸引域的有效辅助函数的表征

Miriam Isabel Seifert
{"title":"表示极值分布及其最大吸引域的有效辅助函数的表征","authors":"Miriam Isabel Seifert","doi":"arxiv-2311.15355","DOIUrl":null,"url":null,"abstract":"In this paper we study two important representations for extreme value\ndistributions and their max-domains of attraction (MDA), namely von Mises\nrepresentation (vMR) and variation representation (VR), which are convenient\nways to gain limit results. Both VR and vMR are defined via so-called auxiliary\nfunctions psi. Up to now, however, the set of valid auxiliary functions for vMR\nhas neither been characterized completely nor separated from those for VR. We\ncontribute to the current literature by introducing ''universal'' auxiliary\nfunctions which are valid for both VR and vMR representations for the entire\nMDA distribution families. Then we identify exactly the sets of valid auxiliary\nfunctions for both VR and vMR. Moreover, we propose a method for finding\nappropriate auxiliary functions with analytically simple structure and provide\nthem for several important distributions.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of valid auxiliary functions for representations of extreme value distributions and their max-domains of attraction\",\"authors\":\"Miriam Isabel Seifert\",\"doi\":\"arxiv-2311.15355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study two important representations for extreme value\\ndistributions and their max-domains of attraction (MDA), namely von Mises\\nrepresentation (vMR) and variation representation (VR), which are convenient\\nways to gain limit results. Both VR and vMR are defined via so-called auxiliary\\nfunctions psi. Up to now, however, the set of valid auxiliary functions for vMR\\nhas neither been characterized completely nor separated from those for VR. We\\ncontribute to the current literature by introducing ''universal'' auxiliary\\nfunctions which are valid for both VR and vMR representations for the entire\\nMDA distribution families. Then we identify exactly the sets of valid auxiliary\\nfunctions for both VR and vMR. Moreover, we propose a method for finding\\nappropriate auxiliary functions with analytically simple structure and provide\\nthem for several important distributions.\",\"PeriodicalId\":501330,\"journal\":{\"name\":\"arXiv - MATH - Statistics Theory\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2311.15355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.15355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了极值分布及其最大吸引域(MDA)的两种重要表示,即von Misesrepresentation (vMR)和variation representation (VR),它们是获得极限结果的方便方法。VR和vMR都是通过所谓的辅助函数psi来定义的。然而,到目前为止,vmr的有效辅助功能集既没有完全表征,也没有与VR的有效辅助功能集分离开来。我们通过引入对整个remda分布家族的VR和vMR表示都有效的“通用”辅助函数来贡献当前的文献。然后,我们准确地确定了VR和vMR的有效辅助函数集。此外,我们还提出了一种寻找结构简单的辅助函数的方法,并为几个重要的分布提供了辅助函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of valid auxiliary functions for representations of extreme value distributions and their max-domains of attraction
In this paper we study two important representations for extreme value distributions and their max-domains of attraction (MDA), namely von Mises representation (vMR) and variation representation (VR), which are convenient ways to gain limit results. Both VR and vMR are defined via so-called auxiliary functions psi. Up to now, however, the set of valid auxiliary functions for vMR has neither been characterized completely nor separated from those for VR. We contribute to the current literature by introducing ''universal'' auxiliary functions which are valid for both VR and vMR representations for the entire MDA distribution families. Then we identify exactly the sets of valid auxiliary functions for both VR and vMR. Moreover, we propose a method for finding appropriate auxiliary functions with analytically simple structure and provide them for several important distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信