线性贝叶斯网络的贝叶斯方法

Seyong Hwang, Kyoungjae Lee, Sunmin Oh, Gunwoong Park
{"title":"线性贝叶斯网络的贝叶斯方法","authors":"Seyong Hwang, Kyoungjae Lee, Sunmin Oh, Gunwoong Park","doi":"arxiv-2311.15610","DOIUrl":null,"url":null,"abstract":"This study proposes the first Bayesian approach for learning high-dimensional\nlinear Bayesian networks. The proposed approach iteratively estimates each\nelement of the topological ordering from backward and its parent using the\ninverse of a partial covariance matrix. The proposed method successfully\nrecovers the underlying structure when Bayesian regularization for the inverse\ncovariance matrix with unequal shrinkage is applied. Specifically, it shows\nthat the number of samples $n = \\Omega( d_M^2 \\log p)$ and $n = \\Omega(d_M^2\np^{2/m})$ are sufficient for the proposed algorithm to learn linear Bayesian\nnetworks with sub-Gaussian and 4m-th bounded-moment error distributions,\nrespectively, where $p$ is the number of nodes and $d_M$ is the maximum degree\nof the moralized graph. The theoretical findings are supported by extensive\nsimulation studies including real data analysis. Furthermore the proposed\nmethod is demonstrated to outperform state-of-the-art frequentist approaches,\nsuch as the BHLSM, LISTEN, and TD algorithms in synthetic data.","PeriodicalId":501330,"journal":{"name":"arXiv - MATH - Statistics Theory","volume":"62 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian Approach to Linear Bayesian Networks\",\"authors\":\"Seyong Hwang, Kyoungjae Lee, Sunmin Oh, Gunwoong Park\",\"doi\":\"arxiv-2311.15610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes the first Bayesian approach for learning high-dimensional\\nlinear Bayesian networks. The proposed approach iteratively estimates each\\nelement of the topological ordering from backward and its parent using the\\ninverse of a partial covariance matrix. The proposed method successfully\\nrecovers the underlying structure when Bayesian regularization for the inverse\\ncovariance matrix with unequal shrinkage is applied. Specifically, it shows\\nthat the number of samples $n = \\\\Omega( d_M^2 \\\\log p)$ and $n = \\\\Omega(d_M^2\\np^{2/m})$ are sufficient for the proposed algorithm to learn linear Bayesian\\nnetworks with sub-Gaussian and 4m-th bounded-moment error distributions,\\nrespectively, where $p$ is the number of nodes and $d_M$ is the maximum degree\\nof the moralized graph. The theoretical findings are supported by extensive\\nsimulation studies including real data analysis. Furthermore the proposed\\nmethod is demonstrated to outperform state-of-the-art frequentist approaches,\\nsuch as the BHLSM, LISTEN, and TD algorithms in synthetic data.\",\"PeriodicalId\":501330,\"journal\":{\"name\":\"arXiv - MATH - Statistics Theory\",\"volume\":\"62 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Statistics Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2311.15610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.15610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了学习高维线性贝叶斯网络的第一种贝叶斯方法。该方法使用部分协方差矩阵的逆来迭代地估计拓扑排序从后向及其父节点的每个元素。当对不等收缩的反方差矩阵进行贝叶斯正则化时,该方法成功地恢复了底层结构。具体来说,研究表明,样本数量$n = \Omega( d_M^2 \log p)$和$n = \Omega(d_M^2p^{2/m})$足以使所提出的算法分别学习亚高斯和4m-th有界矩误差分布的线性贝叶斯网络,其中$p$为节点数,$d_M$为道德图的最大程度。理论发现得到了广泛的模拟研究的支持,包括实际数据分析。此外,所提出的方法被证明优于最先进的频率方法,如BHLSM, LISTEN和TD算法在合成数据中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian Approach to Linear Bayesian Networks
This study proposes the first Bayesian approach for learning high-dimensional linear Bayesian networks. The proposed approach iteratively estimates each element of the topological ordering from backward and its parent using the inverse of a partial covariance matrix. The proposed method successfully recovers the underlying structure when Bayesian regularization for the inverse covariance matrix with unequal shrinkage is applied. Specifically, it shows that the number of samples $n = \Omega( d_M^2 \log p)$ and $n = \Omega(d_M^2 p^{2/m})$ are sufficient for the proposed algorithm to learn linear Bayesian networks with sub-Gaussian and 4m-th bounded-moment error distributions, respectively, where $p$ is the number of nodes and $d_M$ is the maximum degree of the moralized graph. The theoretical findings are supported by extensive simulation studies including real data analysis. Furthermore the proposed method is demonstrated to outperform state-of-the-art frequentist approaches, such as the BHLSM, LISTEN, and TD algorithms in synthetic data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信