高压管道材料选择方法及脆性断裂机理研究

IF 1.2 4区 工程技术 Q3 ACOUSTICS
Yulin Li, Zhihui Li
{"title":"高压管道材料选择方法及脆性断裂机理研究","authors":"Yulin Li, Zhihui Li","doi":"10.1155/2023/9541736","DOIUrl":null,"url":null,"abstract":"Aiming at the problem of the brittle fracture of pressure pipeline, the elastic constraint structure is described by using members and engineering building structures, and the concept of elastic constraint is proposed. Through the stress field analysis of the pressure pipeline under internal pressure, it is found that the pressure pipeline under internal pressure is an elastic constraint structure. The elastic constraint effect is applied to the pressure pipeline to explore the influence of elastic constraint effect on the brittle fracture of pressure pipeline. The critical wall thickness and limit load of different materials are calculated by the limit bearing formula. Through simulation analysis of materials with different yield ratios and pipelines with different wall thicknesses of the same material (yield ratio is the ratio of yield strength to tensile strength), it was found that pressure pipelines made of the same material have an increased load-bearing capacity as the wall thickness increases, but their own elastic constraint effects are becoming more obvious, and the probability of the brittle fracture of the pipeline is higher. When the wall thickness of pressure pipelines made of materials with different yield ratios is certain, the lower the yield ratio is, the more likely the pipeline is to generate plastic deformation and the larger the deformation capacity is; the higher the yield ratio, the poorer the plastic deformation capacity of the pipeline and the smaller the deformation capacity. Pipelines with large yield ratio are more sensitive to the brittle fracture than those with small yield ratio.","PeriodicalId":21915,"journal":{"name":"Shock and Vibration","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Material Selection Method and Brittle Fracture Mechanism of High-Pressure Pipeline\",\"authors\":\"Yulin Li, Zhihui Li\",\"doi\":\"10.1155/2023/9541736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the problem of the brittle fracture of pressure pipeline, the elastic constraint structure is described by using members and engineering building structures, and the concept of elastic constraint is proposed. Through the stress field analysis of the pressure pipeline under internal pressure, it is found that the pressure pipeline under internal pressure is an elastic constraint structure. The elastic constraint effect is applied to the pressure pipeline to explore the influence of elastic constraint effect on the brittle fracture of pressure pipeline. The critical wall thickness and limit load of different materials are calculated by the limit bearing formula. Through simulation analysis of materials with different yield ratios and pipelines with different wall thicknesses of the same material (yield ratio is the ratio of yield strength to tensile strength), it was found that pressure pipelines made of the same material have an increased load-bearing capacity as the wall thickness increases, but their own elastic constraint effects are becoming more obvious, and the probability of the brittle fracture of the pipeline is higher. When the wall thickness of pressure pipelines made of materials with different yield ratios is certain, the lower the yield ratio is, the more likely the pipeline is to generate plastic deformation and the larger the deformation capacity is; the higher the yield ratio, the poorer the plastic deformation capacity of the pipeline and the smaller the deformation capacity. Pipelines with large yield ratio are more sensitive to the brittle fracture than those with small yield ratio.\",\"PeriodicalId\":21915,\"journal\":{\"name\":\"Shock and Vibration\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Shock and Vibration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/9541736\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock and Vibration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/9541736","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

针对压力管道脆性断裂问题,利用构件和工程建筑结构对弹性约束结构进行了描述,提出了弹性约束的概念。通过内压作用下压力管道的应力场分析,发现内压作用下的压力管道是一种弹性约束结构。将弹性约束效应应用于压力管道,探讨弹性约束效应对压力管道脆性断裂的影响。采用极限承载公式计算了不同材料的临界壁厚和极限载荷。通过对不同屈服比的材料和相同材料不同壁厚的管道(屈服比是屈服强度与抗拉强度之比)的模拟分析,发现同种材料制成的压力管道随着壁厚的增加,承载能力有所提高,但其自身的弹性约束作用越来越明显,管道脆性断裂的概率也更高。当不同屈服比材料制成的压力管道壁厚一定时,屈服比越低,管道产生塑性变形的可能性越大,变形能力越大;屈服比越高,管道塑性变形能力越差,变形能力越小。屈服比大的管道比屈服比小的管道对脆性断裂更为敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Material Selection Method and Brittle Fracture Mechanism of High-Pressure Pipeline
Aiming at the problem of the brittle fracture of pressure pipeline, the elastic constraint structure is described by using members and engineering building structures, and the concept of elastic constraint is proposed. Through the stress field analysis of the pressure pipeline under internal pressure, it is found that the pressure pipeline under internal pressure is an elastic constraint structure. The elastic constraint effect is applied to the pressure pipeline to explore the influence of elastic constraint effect on the brittle fracture of pressure pipeline. The critical wall thickness and limit load of different materials are calculated by the limit bearing formula. Through simulation analysis of materials with different yield ratios and pipelines with different wall thicknesses of the same material (yield ratio is the ratio of yield strength to tensile strength), it was found that pressure pipelines made of the same material have an increased load-bearing capacity as the wall thickness increases, but their own elastic constraint effects are becoming more obvious, and the probability of the brittle fracture of the pipeline is higher. When the wall thickness of pressure pipelines made of materials with different yield ratios is certain, the lower the yield ratio is, the more likely the pipeline is to generate plastic deformation and the larger the deformation capacity is; the higher the yield ratio, the poorer the plastic deformation capacity of the pipeline and the smaller the deformation capacity. Pipelines with large yield ratio are more sensitive to the brittle fracture than those with small yield ratio.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Shock and Vibration
Shock and Vibration 物理-工程:机械
CiteScore
3.40
自引率
6.20%
发文量
384
审稿时长
3 months
期刊介绍: Shock and Vibration publishes papers on all aspects of shock and vibration, especially in relation to civil, mechanical and aerospace engineering applications, as well as transport, materials and geoscience. Papers may be theoretical or experimental, and either fundamental or highly applied.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信