椭圆多边形与线性算子的不变范数

IF 1.4 2区 数学 Q1 MATHEMATICS
Calcolo Pub Date : 2023-11-17 DOI:10.1007/s10092-023-00547-z
Thomas Mejstrik, Valdimir Yu. Protasov
{"title":"椭圆多边形与线性算子的不变范数","authors":"Thomas Mejstrik, Valdimir Yu. Protasov","doi":"10.1007/s10092-023-00547-z","DOIUrl":null,"url":null,"abstract":"<p>Elliptic polytopes are convex hulls of several concentric plane ellipses in <span>\\({{\\mathbb {R}}}^d\\)</span>. They arise in applications as natural generalizations of usual polytopes. In particular, they define invariant convex bodies of linear operators, optimal Lyapunov norms for linear dynamical systems, etc. To construct elliptic polytopes one needs to decide whether a given ellipse is contained in the convex hull of other ellipses. We analyse the computational complexity of this problem and show that for <span>\\(d=2, 3\\)</span>, it admits an explicit solution. For larger <i>d</i>, two geometric methods for approximate solution are presented. Both use the convex optimization tools. The efficiency of the methods is demonstrated in two applications: the construction of extremal norms of linear operators and the computation of the joint spectral radius/Lyapunov exponent of a family of matrices.</p>","PeriodicalId":9522,"journal":{"name":"Calcolo","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elliptic polytopes and invariant norms of linear operators\",\"authors\":\"Thomas Mejstrik, Valdimir Yu. Protasov\",\"doi\":\"10.1007/s10092-023-00547-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Elliptic polytopes are convex hulls of several concentric plane ellipses in <span>\\\\({{\\\\mathbb {R}}}^d\\\\)</span>. They arise in applications as natural generalizations of usual polytopes. In particular, they define invariant convex bodies of linear operators, optimal Lyapunov norms for linear dynamical systems, etc. To construct elliptic polytopes one needs to decide whether a given ellipse is contained in the convex hull of other ellipses. We analyse the computational complexity of this problem and show that for <span>\\\\(d=2, 3\\\\)</span>, it admits an explicit solution. For larger <i>d</i>, two geometric methods for approximate solution are presented. Both use the convex optimization tools. The efficiency of the methods is demonstrated in two applications: the construction of extremal norms of linear operators and the computation of the joint spectral radius/Lyapunov exponent of a family of matrices.</p>\",\"PeriodicalId\":9522,\"journal\":{\"name\":\"Calcolo\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Calcolo\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10092-023-00547-z\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calcolo","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10092-023-00547-z","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

椭圆多面体是\({{\mathbb {R}}}^d\)中几个同心圆平面椭圆的凸壳。它们在应用中作为通常多面体的自然推广而出现。特别地,他们定义了线性算子的不变凸体,线性动力系统的最优Lyapunov范数等。为了构造椭圆多面体,需要确定给定的椭圆是否包含在其他椭圆的凸包中。我们分析了这个问题的计算复杂性,并表明对于\(d=2, 3\),它承认一个显式解。对于较大的d,给出了近似解的两种几何方法。两者都使用凸优化工具。在线性算子极值范数的构造和一类矩阵的联合谱半径/Lyapunov指数的计算两个应用中证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Elliptic polytopes and invariant norms of linear operators

Elliptic polytopes and invariant norms of linear operators

Elliptic polytopes are convex hulls of several concentric plane ellipses in \({{\mathbb {R}}}^d\). They arise in applications as natural generalizations of usual polytopes. In particular, they define invariant convex bodies of linear operators, optimal Lyapunov norms for linear dynamical systems, etc. To construct elliptic polytopes one needs to decide whether a given ellipse is contained in the convex hull of other ellipses. We analyse the computational complexity of this problem and show that for \(d=2, 3\), it admits an explicit solution. For larger d, two geometric methods for approximate solution are presented. Both use the convex optimization tools. The efficiency of the methods is demonstrated in two applications: the construction of extremal norms of linear operators and the computation of the joint spectral radius/Lyapunov exponent of a family of matrices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Calcolo
Calcolo 数学-数学
CiteScore
2.40
自引率
11.80%
发文量
36
审稿时长
>12 weeks
期刊介绍: Calcolo is a quarterly of the Italian National Research Council, under the direction of the Institute for Informatics and Telematics in Pisa. Calcolo publishes original contributions in English on Numerical Analysis and its Applications, and on the Theory of Computation. The main focus of the journal is on Numerical Linear Algebra, Approximation Theory and its Applications, Numerical Solution of Differential and Integral Equations, Computational Complexity, Algorithmics, Mathematical Aspects of Computer Science, Optimization Theory. Expository papers will also appear from time to time as an introduction to emerging topics in one of the above mentioned fields. There will be a "Report" section, with abstracts of PhD Theses, news and reports from conferences and book reviews. All submissions will be carefully refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信