从多项式时间中分离秩逻辑

IF 2.3 2区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Moritz Lichter
{"title":"从多项式时间中分离秩逻辑","authors":"Moritz Lichter","doi":"https://dl.acm.org/doi/10.1145/3572918","DOIUrl":null,"url":null,"abstract":"<p>In the search for a logic capturing polynomial time the most promising candidates are Choiceless Polynomial Time (CPT) and rank logic. Rank logic extends fixed-point logic with counting by a rank operator over prime fields. We show that the isomorphism problem for CFI graphs over ℤ<sub>2<sup><i>i</i></sup></sub> cannot be defined in rank logic, even if the base graph is totally ordered. However, CPT can define this isomorphism problem. We thereby separate rank logic from CPT and in particular from polynomial time.</p>","PeriodicalId":50022,"journal":{"name":"Journal of the ACM","volume":"32 7-8","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Separating Rank Logic from Polynomial Time\",\"authors\":\"Moritz Lichter\",\"doi\":\"https://dl.acm.org/doi/10.1145/3572918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the search for a logic capturing polynomial time the most promising candidates are Choiceless Polynomial Time (CPT) and rank logic. Rank logic extends fixed-point logic with counting by a rank operator over prime fields. We show that the isomorphism problem for CFI graphs over ℤ<sub>2<sup><i>i</i></sup></sub> cannot be defined in rank logic, even if the base graph is totally ordered. However, CPT can define this isomorphism problem. We thereby separate rank logic from CPT and in particular from polynomial time.</p>\",\"PeriodicalId\":50022,\"journal\":{\"name\":\"Journal of the ACM\",\"volume\":\"32 7-8\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the ACM\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3572918\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the ACM","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3572918","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

在寻找捕获多项式时间的逻辑时,最有希望的候选是无选择多项式时间(CPT)和秩逻辑。秩逻辑扩展了定点逻辑,使用秩算子对素数域进行计数。我们证明了CFI图的同构问题不能在秩逻辑中定义,即使基图是完全有序的。然而,CPT可以定义这个同构问题。因此我们将秩逻辑从CPT中分离出来,特别是从多项式时间中分离出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Separating Rank Logic from Polynomial Time

In the search for a logic capturing polynomial time the most promising candidates are Choiceless Polynomial Time (CPT) and rank logic. Rank logic extends fixed-point logic with counting by a rank operator over prime fields. We show that the isomorphism problem for CFI graphs over ℤ2i cannot be defined in rank logic, even if the base graph is totally ordered. However, CPT can define this isomorphism problem. We thereby separate rank logic from CPT and in particular from polynomial time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the ACM
Journal of the ACM 工程技术-计算机:理论方法
CiteScore
7.50
自引率
0.00%
发文量
51
审稿时长
3 months
期刊介绍: The best indicator of the scope of the journal is provided by the areas covered by its Editorial Board. These areas change from time to time, as the field evolves. The following areas are currently covered by a member of the Editorial Board: Algorithms and Combinatorial Optimization; Algorithms and Data Structures; Algorithms, Combinatorial Optimization, and Games; Artificial Intelligence; Complexity Theory; Computational Biology; Computational Geometry; Computer Graphics and Computer Vision; Computer-Aided Verification; Cryptography and Security; Cyber-Physical, Embedded, and Real-Time Systems; Database Systems and Theory; Distributed Computing; Economics and Computation; Information Theory; Logic and Computation; Logic, Algorithms, and Complexity; Machine Learning and Computational Learning Theory; Networking; Parallel Computing and Architecture; Programming Languages; Quantum Computing; Randomized Algorithms and Probabilistic Analysis of Algorithms; Scientific Computing and High Performance Computing; Software Engineering; Web Algorithms and Data Mining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信