Avinatan Hassidim, Haim Kaplan, Yishay Mansour, Yossi Matias, Uri Stemmer
{"title":"基于差分隐私的对抗鲁棒流算法","authors":"Avinatan Hassidim, Haim Kaplan, Yishay Mansour, Yossi Matias, Uri Stemmer","doi":"https://dl.acm.org/doi/10.1145/3556972","DOIUrl":null,"url":null,"abstract":"<p>A streaming algorithm is said to be <i>adversarially robust</i> if its accuracy guarantees are maintained even when the data stream is chosen maliciously, by an <i>adaptive adversary</i>. We establish a connection between adversarial robustness of streaming algorithms and the notion of <i>differential privacy</i>. This connection allows us to design new adversarially robust streaming algorithms that outperform the current state-of-the-art constructions for many interesting regimes of parameters.</p>","PeriodicalId":50022,"journal":{"name":"Journal of the ACM","volume":"3 4","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adversarially Robust Streaming Algorithms via Differential Privacy\",\"authors\":\"Avinatan Hassidim, Haim Kaplan, Yishay Mansour, Yossi Matias, Uri Stemmer\",\"doi\":\"https://dl.acm.org/doi/10.1145/3556972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A streaming algorithm is said to be <i>adversarially robust</i> if its accuracy guarantees are maintained even when the data stream is chosen maliciously, by an <i>adaptive adversary</i>. We establish a connection between adversarial robustness of streaming algorithms and the notion of <i>differential privacy</i>. This connection allows us to design new adversarially robust streaming algorithms that outperform the current state-of-the-art constructions for many interesting regimes of parameters.</p>\",\"PeriodicalId\":50022,\"journal\":{\"name\":\"Journal of the ACM\",\"volume\":\"3 4\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the ACM\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3556972\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the ACM","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3556972","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Adversarially Robust Streaming Algorithms via Differential Privacy
A streaming algorithm is said to be adversarially robust if its accuracy guarantees are maintained even when the data stream is chosen maliciously, by an adaptive adversary. We establish a connection between adversarial robustness of streaming algorithms and the notion of differential privacy. This connection allows us to design new adversarially robust streaming algorithms that outperform the current state-of-the-art constructions for many interesting regimes of parameters.
期刊介绍:
The best indicator of the scope of the journal is provided by the areas covered by its Editorial Board. These areas change from time to time, as the field evolves. The following areas are currently covered by a member of the Editorial Board: Algorithms and Combinatorial Optimization; Algorithms and Data Structures; Algorithms, Combinatorial Optimization, and Games; Artificial Intelligence; Complexity Theory; Computational Biology; Computational Geometry; Computer Graphics and Computer Vision; Computer-Aided Verification; Cryptography and Security; Cyber-Physical, Embedded, and Real-Time Systems; Database Systems and Theory; Distributed Computing; Economics and Computation; Information Theory; Logic and Computation; Logic, Algorithms, and Complexity; Machine Learning and Computational Learning Theory; Networking; Parallel Computing and Architecture; Programming Languages; Quantum Computing; Randomized Algorithms and Probabilistic Analysis of Algorithms; Scientific Computing and High Performance Computing; Software Engineering; Web Algorithms and Data Mining