随机顺序类型的凸包

IF 2.3 2区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Xavier Goaoc, Emo Welzl
{"title":"随机顺序类型的凸包","authors":"Xavier Goaoc, Emo Welzl","doi":"https://dl.acm.org/doi/10.1145/3570636","DOIUrl":null,"url":null,"abstract":"<p>We establish the following two main results on order types of points in general position in the plane (realizable simple planar order types, realizable uniform acyclic oriented matroids of rank 3):\n<p><table border=\"0\" list-type=\"ordered\" width=\"95%\"><tr><td valign=\"top\"><p>(a)</p></td><td colspan=\"5\" valign=\"top\"><p>The number of extreme points in an <i>n</i>-point order type, chosen uniformly at random from all such order types, is on average 4+<i>o</i>(1). For labeled order types, this number has average \\(4- \\mbox{$\\frac{8}{n^2 - n +2}$}\\) and variance at most 3.</p></td></tr><tr><td valign=\"top\"><p>(b)</p></td><td colspan=\"5\" valign=\"top\"><p>The (labeled) order types read off a set of <i>n</i> points sampled independently from the uniform measure on a convex planar domain, smooth or polygonal, or from a Gaussian distribution are concentrated, i.e., such sampling typically encounters only a vanishingly small fraction of all order types of the given size.</p></td></tr></table></p> Result (a) generalizes to arbitrary dimension <i>d</i> for labeled order types with the average number of extreme points 2<i>d</i>+<i>o</i> (1) and constant variance. We also discuss to what extent our methods generalize to the abstract setting of uniform acyclic oriented matroids. Moreover, our methods show the following relative of the Erdős-Szekeres theorem: for any fixed <i>k</i>, as <i>n</i> → ∞, a proportion 1 - <i>O</i>(1/<i>n</i>) of the <i>n</i>-point simple order types contain a triangle enclosing a convex <i>k</i>-chain over an edge.</p><p>For the unlabeled case in (a), we prove that for any antipodal, finite subset of the two-dimensional sphere, the group of orientation preserving bijections is cyclic, dihedral, or one of <i>A</i><sub>4</sub>, <i>S</i><sub>4</sub>, or <i>A</i><sub>5</sub> (and each case is possible). These are the finite subgroups of <i>SO</i>(3) and our proof follows the lines of their characterization by Felix Klein.</p>","PeriodicalId":50022,"journal":{"name":"Journal of the ACM","volume":"78 8","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convex Hulls of Random Order Types\",\"authors\":\"Xavier Goaoc, Emo Welzl\",\"doi\":\"https://dl.acm.org/doi/10.1145/3570636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We establish the following two main results on order types of points in general position in the plane (realizable simple planar order types, realizable uniform acyclic oriented matroids of rank 3):\\n<p><table border=\\\"0\\\" list-type=\\\"ordered\\\" width=\\\"95%\\\"><tr><td valign=\\\"top\\\"><p>(a)</p></td><td colspan=\\\"5\\\" valign=\\\"top\\\"><p>The number of extreme points in an <i>n</i>-point order type, chosen uniformly at random from all such order types, is on average 4+<i>o</i>(1). For labeled order types, this number has average \\\\(4- \\\\mbox{$\\\\frac{8}{n^2 - n +2}$}\\\\) and variance at most 3.</p></td></tr><tr><td valign=\\\"top\\\"><p>(b)</p></td><td colspan=\\\"5\\\" valign=\\\"top\\\"><p>The (labeled) order types read off a set of <i>n</i> points sampled independently from the uniform measure on a convex planar domain, smooth or polygonal, or from a Gaussian distribution are concentrated, i.e., such sampling typically encounters only a vanishingly small fraction of all order types of the given size.</p></td></tr></table></p> Result (a) generalizes to arbitrary dimension <i>d</i> for labeled order types with the average number of extreme points 2<i>d</i>+<i>o</i> (1) and constant variance. We also discuss to what extent our methods generalize to the abstract setting of uniform acyclic oriented matroids. Moreover, our methods show the following relative of the Erdős-Szekeres theorem: for any fixed <i>k</i>, as <i>n</i> → ∞, a proportion 1 - <i>O</i>(1/<i>n</i>) of the <i>n</i>-point simple order types contain a triangle enclosing a convex <i>k</i>-chain over an edge.</p><p>For the unlabeled case in (a), we prove that for any antipodal, finite subset of the two-dimensional sphere, the group of orientation preserving bijections is cyclic, dihedral, or one of <i>A</i><sub>4</sub>, <i>S</i><sub>4</sub>, or <i>A</i><sub>5</sub> (and each case is possible). These are the finite subgroups of <i>SO</i>(3) and our proof follows the lines of their characterization by Felix Klein.</p>\",\"PeriodicalId\":50022,\"journal\":{\"name\":\"Journal of the ACM\",\"volume\":\"78 8\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the ACM\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3570636\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the ACM","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3570636","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

我们建立了平面上一般位置点的阶型(可实现的简单平面阶型,可实现的秩为3的一致无环定向阵)的两个主要结果:(a)从所有这些阶型中均匀随机选择的n点阶型的极值点的数目平均为4+o(1)。对于标记的阶型,这个数字的平均值为\(4- \mbox{$\frac{8}{n^2 - n +2}$}\),方差最多为3。(b)从凸平面域、光滑或多边形或高斯分布的均匀测量中独立采样的n个点的集合中读取(标记的)阶型是集中的,即,这种采样通常只遇到给定大小的所有阶型的一小部分。结果(a)推广到任意维度d,对于有标记的阶型,极值点的平均个数为2d+o(1),方差为常数。我们还讨论了我们的方法在多大程度上推广到一致无环定向拟阵的抽象集合。此外,我们的方法还证明了Erdős-Szekeres定理的如下关系:对于任意固定k,当n→∞时,n点简单阶型的比例1 - O(1/n)包含一个在边上包有凸k链的三角形。对于(a)中的未标记情况,我们证明了对于二维球面的任何对映有限子集,保向双射群是循环的、二面体的或A4、S4、A5中的一个(每种情况都是可能的)。这些是SO(3)的有限子群,我们的证明遵循了Felix Klein对它们的描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convex Hulls of Random Order Types

We establish the following two main results on order types of points in general position in the plane (realizable simple planar order types, realizable uniform acyclic oriented matroids of rank 3):

(a)

The number of extreme points in an n-point order type, chosen uniformly at random from all such order types, is on average 4+o(1). For labeled order types, this number has average \(4- \mbox{$\frac{8}{n^2 - n +2}$}\) and variance at most 3.

(b)

The (labeled) order types read off a set of n points sampled independently from the uniform measure on a convex planar domain, smooth or polygonal, or from a Gaussian distribution are concentrated, i.e., such sampling typically encounters only a vanishingly small fraction of all order types of the given size.

Result (a) generalizes to arbitrary dimension d for labeled order types with the average number of extreme points 2d+o (1) and constant variance. We also discuss to what extent our methods generalize to the abstract setting of uniform acyclic oriented matroids. Moreover, our methods show the following relative of the Erdős-Szekeres theorem: for any fixed k, as n → ∞, a proportion 1 - O(1/n) of the n-point simple order types contain a triangle enclosing a convex k-chain over an edge.

For the unlabeled case in (a), we prove that for any antipodal, finite subset of the two-dimensional sphere, the group of orientation preserving bijections is cyclic, dihedral, or one of A4, S4, or A5 (and each case is possible). These are the finite subgroups of SO(3) and our proof follows the lines of their characterization by Felix Klein.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the ACM
Journal of the ACM 工程技术-计算机:理论方法
CiteScore
7.50
自引率
0.00%
发文量
51
审稿时长
3 months
期刊介绍: The best indicator of the scope of the journal is provided by the areas covered by its Editorial Board. These areas change from time to time, as the field evolves. The following areas are currently covered by a member of the Editorial Board: Algorithms and Combinatorial Optimization; Algorithms and Data Structures; Algorithms, Combinatorial Optimization, and Games; Artificial Intelligence; Complexity Theory; Computational Biology; Computational Geometry; Computer Graphics and Computer Vision; Computer-Aided Verification; Cryptography and Security; Cyber-Physical, Embedded, and Real-Time Systems; Database Systems and Theory; Distributed Computing; Economics and Computation; Information Theory; Logic and Computation; Logic, Algorithms, and Complexity; Machine Learning and Computational Learning Theory; Networking; Parallel Computing and Architecture; Programming Languages; Quantum Computing; Randomized Algorithms and Probabilistic Analysis of Algorithms; Scientific Computing and High Performance Computing; Software Engineering; Web Algorithms and Data Mining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信