论时间约束满足问题的描述复杂性

IF 2.3 2区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Manuel Bodirsky, Jakub Rydval
{"title":"论时间约束满足问题的描述复杂性","authors":"Manuel Bodirsky, Jakub Rydval","doi":"https://dl.acm.org/doi/10.1145/3566051","DOIUrl":null,"url":null,"abstract":"<p>Finite-domain constraint satisfaction problems are either solvable by Datalog or not even expressible in fixed-point logic with counting. The border between the two regimes can be described by a universal-algebraic minor condition. For infinite-domain constraint satisfaction problems (CSPs), the situation is more complicated even if the template structure of the CSP is model-theoretically tame. We prove that there is no Maltsev condition that characterizes Datalog already for the CSPs of first-order reducts of (ℚ;&lt;); such CSPs are called <i>temporal CSPs</i> and are of fundamental importance in infinite-domain constraint satisfaction. Our main result is a complete classification of temporal CSPs that can be expressed in one of the following logical formalisms: Datalog, fixed-point logic (with or without counting), or fixed-point logic with the mod-2 rank operator. The classification shows that many of the equivalent conditions in the finite fail to capture expressibility in Datalog or fixed-point logic already for temporal CSPs.</p>","PeriodicalId":50022,"journal":{"name":"Journal of the ACM","volume":"42 9-10","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Descriptive Complexity of Temporal Constraint Satisfaction Problems\",\"authors\":\"Manuel Bodirsky, Jakub Rydval\",\"doi\":\"https://dl.acm.org/doi/10.1145/3566051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Finite-domain constraint satisfaction problems are either solvable by Datalog or not even expressible in fixed-point logic with counting. The border between the two regimes can be described by a universal-algebraic minor condition. For infinite-domain constraint satisfaction problems (CSPs), the situation is more complicated even if the template structure of the CSP is model-theoretically tame. We prove that there is no Maltsev condition that characterizes Datalog already for the CSPs of first-order reducts of (ℚ;&lt;); such CSPs are called <i>temporal CSPs</i> and are of fundamental importance in infinite-domain constraint satisfaction. Our main result is a complete classification of temporal CSPs that can be expressed in one of the following logical formalisms: Datalog, fixed-point logic (with or without counting), or fixed-point logic with the mod-2 rank operator. The classification shows that many of the equivalent conditions in the finite fail to capture expressibility in Datalog or fixed-point logic already for temporal CSPs.</p>\",\"PeriodicalId\":50022,\"journal\":{\"name\":\"Journal of the ACM\",\"volume\":\"42 9-10\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the ACM\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3566051\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the ACM","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3566051","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

有限域约束满足问题要么是Datalog可解的,要么是在有计数的不动点逻辑中无法表达的。两种状态之间的边界可以用一个泛代数小条件来描述。对于无限域约束满足问题(CSP),即使CSP的模板结构在理论上是模型化的,情况也更为复杂。证明了(π;<)的一阶约的csp不存在表征Datalog的Maltsev条件;这种csp被称为时间csp,在无限域约束满足中具有重要意义。我们的主要结果是时间csp的完整分类,可以用以下逻辑形式之一表示:数据,定点逻辑(带或不带计数)或带mod-2秩算子的定点逻辑。该分类表明,对于时态csp,有限条件中的许多等效条件已经无法捕获Datalog或不动点逻辑中的可表达性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Descriptive Complexity of Temporal Constraint Satisfaction Problems

Finite-domain constraint satisfaction problems are either solvable by Datalog or not even expressible in fixed-point logic with counting. The border between the two regimes can be described by a universal-algebraic minor condition. For infinite-domain constraint satisfaction problems (CSPs), the situation is more complicated even if the template structure of the CSP is model-theoretically tame. We prove that there is no Maltsev condition that characterizes Datalog already for the CSPs of first-order reducts of (ℚ;<); such CSPs are called temporal CSPs and are of fundamental importance in infinite-domain constraint satisfaction. Our main result is a complete classification of temporal CSPs that can be expressed in one of the following logical formalisms: Datalog, fixed-point logic (with or without counting), or fixed-point logic with the mod-2 rank operator. The classification shows that many of the equivalent conditions in the finite fail to capture expressibility in Datalog or fixed-point logic already for temporal CSPs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the ACM
Journal of the ACM 工程技术-计算机:理论方法
CiteScore
7.50
自引率
0.00%
发文量
51
审稿时长
3 months
期刊介绍: The best indicator of the scope of the journal is provided by the areas covered by its Editorial Board. These areas change from time to time, as the field evolves. The following areas are currently covered by a member of the Editorial Board: Algorithms and Combinatorial Optimization; Algorithms and Data Structures; Algorithms, Combinatorial Optimization, and Games; Artificial Intelligence; Complexity Theory; Computational Biology; Computational Geometry; Computer Graphics and Computer Vision; Computer-Aided Verification; Cryptography and Security; Cyber-Physical, Embedded, and Real-Time Systems; Database Systems and Theory; Distributed Computing; Economics and Computation; Information Theory; Logic and Computation; Logic, Algorithms, and Complexity; Machine Learning and Computational Learning Theory; Networking; Parallel Computing and Architecture; Programming Languages; Quantum Computing; Randomized Algorithms and Probabilistic Analysis of Algorithms; Scientific Computing and High Performance Computing; Software Engineering; Web Algorithms and Data Mining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信