具有未知链接函数的广义线性混合模型的筛极大似然估计

Pub Date : 2023-11-27 DOI:10.4310/23-sii813
Guoqing Diao, Mengdie Yuan
{"title":"具有未知链接函数的广义线性混合模型的筛极大似然估计","authors":"Guoqing Diao, Mengdie Yuan","doi":"10.4310/23-sii813","DOIUrl":null,"url":null,"abstract":"We study the generalized linear mixed models with an unknown link function for correlated outcome data. We propose sieve maximum likelihood estimation procedures by using B‑splines. Specifically, we estimate the unknown link function in a sieve space spanned by the B‑spline basis of the linear predictor that includes both the fixed and random terms. We establish the consistency and asymptotic normality of the proposed sieve maximum likelihood estimators. Extensive simulation studies, along with an application to an epileptic study, are provided to evaluate the finite-sample performance of the proposed method.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sieve maximum likelihood estimation for generalized linear mixed models with an unknown link function\",\"authors\":\"Guoqing Diao, Mengdie Yuan\",\"doi\":\"10.4310/23-sii813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the generalized linear mixed models with an unknown link function for correlated outcome data. We propose sieve maximum likelihood estimation procedures by using B‑splines. Specifically, we estimate the unknown link function in a sieve space spanned by the B‑spline basis of the linear predictor that includes both the fixed and random terms. We establish the consistency and asymptotic normality of the proposed sieve maximum likelihood estimators. Extensive simulation studies, along with an application to an epileptic study, are provided to evaluate the finite-sample performance of the proposed method.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/23-sii813\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/23-sii813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了具有未知链接函数的相关结果数据的广义线性混合模型。我们利用B样条提出了筛极大似然估计方法。具体来说,我们在一个筛空间中估计未知的链接函数,该空间由线性预测器的B样条基所跨越,其中包括固定项和随机项。我们建立了所提筛极大似然估计的相合性和渐近正态性。广泛的模拟研究,以及在癫痫研究中的应用,提供了评估所提出的方法的有限样本性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Sieve maximum likelihood estimation for generalized linear mixed models with an unknown link function
We study the generalized linear mixed models with an unknown link function for correlated outcome data. We propose sieve maximum likelihood estimation procedures by using B‑splines. Specifically, we estimate the unknown link function in a sieve space spanned by the B‑spline basis of the linear predictor that includes both the fixed and random terms. We establish the consistency and asymptotic normality of the proposed sieve maximum likelihood estimators. Extensive simulation studies, along with an application to an epileptic study, are provided to evaluate the finite-sample performance of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信