{"title":"具有未知链接函数的广义线性混合模型的筛极大似然估计","authors":"Guoqing Diao, Mengdie Yuan","doi":"10.4310/23-sii813","DOIUrl":null,"url":null,"abstract":"We study the generalized linear mixed models with an unknown link function for correlated outcome data. We propose sieve maximum likelihood estimation procedures by using B‑splines. Specifically, we estimate the unknown link function in a sieve space spanned by the B‑spline basis of the linear predictor that includes both the fixed and random terms. We establish the consistency and asymptotic normality of the proposed sieve maximum likelihood estimators. Extensive simulation studies, along with an application to an epileptic study, are provided to evaluate the finite-sample performance of the proposed method.","PeriodicalId":51230,"journal":{"name":"Statistics and Its Interface","volume":"68 7-8","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sieve maximum likelihood estimation for generalized linear mixed models with an unknown link function\",\"authors\":\"Guoqing Diao, Mengdie Yuan\",\"doi\":\"10.4310/23-sii813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the generalized linear mixed models with an unknown link function for correlated outcome data. We propose sieve maximum likelihood estimation procedures by using B‑splines. Specifically, we estimate the unknown link function in a sieve space spanned by the B‑spline basis of the linear predictor that includes both the fixed and random terms. We establish the consistency and asymptotic normality of the proposed sieve maximum likelihood estimators. Extensive simulation studies, along with an application to an epileptic study, are provided to evaluate the finite-sample performance of the proposed method.\",\"PeriodicalId\":51230,\"journal\":{\"name\":\"Statistics and Its Interface\",\"volume\":\"68 7-8\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics and Its Interface\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/23-sii813\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Its Interface","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/23-sii813","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Sieve maximum likelihood estimation for generalized linear mixed models with an unknown link function
We study the generalized linear mixed models with an unknown link function for correlated outcome data. We propose sieve maximum likelihood estimation procedures by using B‑splines. Specifically, we estimate the unknown link function in a sieve space spanned by the B‑spline basis of the linear predictor that includes both the fixed and random terms. We establish the consistency and asymptotic normality of the proposed sieve maximum likelihood estimators. Extensive simulation studies, along with an application to an epileptic study, are provided to evaluate the finite-sample performance of the proposed method.
期刊介绍:
Exploring the interface between the field of statistics and other disciplines, including but not limited to: biomedical sciences, geosciences, computer sciences, engineering, and social and behavioral sciences. Publishes high-quality articles in broad areas of statistical science, emphasizing substantive problems, sound statistical models and methods, clear and efficient computational algorithms, and insightful discussions of the motivating problems.