Mark B. Fiecas, Christian Coffman, Meng Xu, Timothy J. Hendrickson, Bryon A. Mueller, Bonnie Klimes-Dougan, Kathryn R. Cullen
{"title":"静息状态fMRI动态连通性分析的近似隐半马尔可夫模型","authors":"Mark B. Fiecas, Christian Coffman, Meng Xu, Timothy J. Hendrickson, Bryon A. Mueller, Bonnie Klimes-Dougan, Kathryn R. Cullen","doi":"10.4310/22-sii730","DOIUrl":null,"url":null,"abstract":"Motivated by a study on adolescent mental health, we conduct a dynamic connectivity analysis using resting-state functional magnetic resonance imaging (fMRI) data. A dynamic connectivity analysis investigates how the interactions between different regions of the brain, represented by the different dimensions of a multivariate time series, change over time. HiddenMarkov models (HMMs) and hidden semi-Markov models (HSMMs) are common analytic approaches for conducting dynamic connectivity analyses. However, existing approaches for HSMMs are limited in their ability to incorporate covariate information. In this work, we approximate an HSMM using an HMM for modeling multivariate time series data. The approximate HSMM (aHSMM) model allows one to explicitly model dwell-time distributions that are available to HSMMs, while maintaining the theoretical and methodological advances that are available to HMMs. We conducted a simulation study to show the performance of the aHSMM relative to other approaches. Finally, we used the aHSMM to conduct a dynamic connectivity analysis, where we showed how dwell-time distributions vary across the severity of non-suicidal self-injury (NSSI) in adolescents. The aHSMM allowed us to identify states that have greater dwell-times for those with moderate or severe NSSI.","PeriodicalId":51230,"journal":{"name":"Statistics and Its Interface","volume":"105 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximate hidden semi-Markov models for dynamic connectivity analysis in resting-state fMRI\",\"authors\":\"Mark B. Fiecas, Christian Coffman, Meng Xu, Timothy J. Hendrickson, Bryon A. Mueller, Bonnie Klimes-Dougan, Kathryn R. Cullen\",\"doi\":\"10.4310/22-sii730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by a study on adolescent mental health, we conduct a dynamic connectivity analysis using resting-state functional magnetic resonance imaging (fMRI) data. A dynamic connectivity analysis investigates how the interactions between different regions of the brain, represented by the different dimensions of a multivariate time series, change over time. HiddenMarkov models (HMMs) and hidden semi-Markov models (HSMMs) are common analytic approaches for conducting dynamic connectivity analyses. However, existing approaches for HSMMs are limited in their ability to incorporate covariate information. In this work, we approximate an HSMM using an HMM for modeling multivariate time series data. The approximate HSMM (aHSMM) model allows one to explicitly model dwell-time distributions that are available to HSMMs, while maintaining the theoretical and methodological advances that are available to HMMs. We conducted a simulation study to show the performance of the aHSMM relative to other approaches. Finally, we used the aHSMM to conduct a dynamic connectivity analysis, where we showed how dwell-time distributions vary across the severity of non-suicidal self-injury (NSSI) in adolescents. The aHSMM allowed us to identify states that have greater dwell-times for those with moderate or severe NSSI.\",\"PeriodicalId\":51230,\"journal\":{\"name\":\"Statistics and Its Interface\",\"volume\":\"105 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics and Its Interface\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/22-sii730\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Its Interface","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/22-sii730","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Approximate hidden semi-Markov models for dynamic connectivity analysis in resting-state fMRI
Motivated by a study on adolescent mental health, we conduct a dynamic connectivity analysis using resting-state functional magnetic resonance imaging (fMRI) data. A dynamic connectivity analysis investigates how the interactions between different regions of the brain, represented by the different dimensions of a multivariate time series, change over time. HiddenMarkov models (HMMs) and hidden semi-Markov models (HSMMs) are common analytic approaches for conducting dynamic connectivity analyses. However, existing approaches for HSMMs are limited in their ability to incorporate covariate information. In this work, we approximate an HSMM using an HMM for modeling multivariate time series data. The approximate HSMM (aHSMM) model allows one to explicitly model dwell-time distributions that are available to HSMMs, while maintaining the theoretical and methodological advances that are available to HMMs. We conducted a simulation study to show the performance of the aHSMM relative to other approaches. Finally, we used the aHSMM to conduct a dynamic connectivity analysis, where we showed how dwell-time distributions vary across the severity of non-suicidal self-injury (NSSI) in adolescents. The aHSMM allowed us to identify states that have greater dwell-times for those with moderate or severe NSSI.
期刊介绍:
Exploring the interface between the field of statistics and other disciplines, including but not limited to: biomedical sciences, geosciences, computer sciences, engineering, and social and behavioral sciences. Publishes high-quality articles in broad areas of statistical science, emphasizing substantive problems, sound statistical models and methods, clear and efficient computational algorithms, and insightful discussions of the motivating problems.