{"title":"循环交通荷载和海水侵蚀对破碎钙质砂渗透的影响","authors":"Hao Xiong, Rui Tang, Zhen-yu Yin, Hanqing Chen, Zhimin Zhang, Yuanyi Qiu, Runqi Zhang","doi":"10.1615/intjmultcompeng.2023049633","DOIUrl":null,"url":null,"abstract":"Calcareous sands, in contrast to ordinary terrestrial source sands, are characterized by their propensity for fragmentation. This leads to the fracturing of calcareous sands within the foundation under the impact of traffic loads. The crushed calcareous sands then experience suffusion due to cyclic wave action, potentially causing foundation settlement. However, limited research has been conducted on the effects of varying load frequencies and magnitudes on road foundations subjected to cyclic traffic loads. In this study, a series of numerical case studies employing the CFD-DEM method are conducted. The macroscopic and microscopic effects of load magnitude and frequency on fines loss mass, fines loss rate, soil surface displacement, and microstructure are analyzed. The results indicate that as the traffic load magnitude increases and frequency decreases, fines loss mass and volumetric strain of the soil decrease, reducing the suffusion effect on the foundation. These findings provide valuable insights for the development of micromechanical constitutive models for calcareous sands and the design of transportation infrastructure.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of cyclic traffic loads and seawater erosion on suffusion of crushed calcareous sands\",\"authors\":\"Hao Xiong, Rui Tang, Zhen-yu Yin, Hanqing Chen, Zhimin Zhang, Yuanyi Qiu, Runqi Zhang\",\"doi\":\"10.1615/intjmultcompeng.2023049633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Calcareous sands, in contrast to ordinary terrestrial source sands, are characterized by their propensity for fragmentation. This leads to the fracturing of calcareous sands within the foundation under the impact of traffic loads. The crushed calcareous sands then experience suffusion due to cyclic wave action, potentially causing foundation settlement. However, limited research has been conducted on the effects of varying load frequencies and magnitudes on road foundations subjected to cyclic traffic loads. In this study, a series of numerical case studies employing the CFD-DEM method are conducted. The macroscopic and microscopic effects of load magnitude and frequency on fines loss mass, fines loss rate, soil surface displacement, and microstructure are analyzed. The results indicate that as the traffic load magnitude increases and frequency decreases, fines loss mass and volumetric strain of the soil decrease, reducing the suffusion effect on the foundation. These findings provide valuable insights for the development of micromechanical constitutive models for calcareous sands and the design of transportation infrastructure.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1615/intjmultcompeng.2023049633\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/intjmultcompeng.2023049633","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Effects of cyclic traffic loads and seawater erosion on suffusion of crushed calcareous sands
Calcareous sands, in contrast to ordinary terrestrial source sands, are characterized by their propensity for fragmentation. This leads to the fracturing of calcareous sands within the foundation under the impact of traffic loads. The crushed calcareous sands then experience suffusion due to cyclic wave action, potentially causing foundation settlement. However, limited research has been conducted on the effects of varying load frequencies and magnitudes on road foundations subjected to cyclic traffic loads. In this study, a series of numerical case studies employing the CFD-DEM method are conducted. The macroscopic and microscopic effects of load magnitude and frequency on fines loss mass, fines loss rate, soil surface displacement, and microstructure are analyzed. The results indicate that as the traffic load magnitude increases and frequency decreases, fines loss mass and volumetric strain of the soil decrease, reducing the suffusion effect on the foundation. These findings provide valuable insights for the development of micromechanical constitutive models for calcareous sands and the design of transportation infrastructure.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.