Giovanni Scala, Anindita Bera, Gniewomir Sarbicki, Dariusz Chruściński
{"title":"广义Choi映射在M_3中的最优性","authors":"Giovanni Scala, Anindita Bera, Gniewomir Sarbicki, Dariusz Chruściński","doi":"arxiv-2312.02814","DOIUrl":null,"url":null,"abstract":"A family of linear positive maps in the algebra of $3 \\times 3$ complex\nmatrices proposed recently in Bera et al. arXiv:2212.03807 is further analyzed.\nIt provides a generalization of a seminal Choi nondecomposable extremal map in\n$M_3$. We investigate when generalized Choi maps are optimal, i.e. cannot be\nrepresented as a sum of positive and completely positive maps. This property is\nweaker than extremality, however, it turns out that it plays a key role in\ndetecting quantum entanglement.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimality of generalized Choi maps in $M_3$\",\"authors\":\"Giovanni Scala, Anindita Bera, Gniewomir Sarbicki, Dariusz Chruściński\",\"doi\":\"arxiv-2312.02814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A family of linear positive maps in the algebra of $3 \\\\times 3$ complex\\nmatrices proposed recently in Bera et al. arXiv:2212.03807 is further analyzed.\\nIt provides a generalization of a seminal Choi nondecomposable extremal map in\\n$M_3$. We investigate when generalized Choi maps are optimal, i.e. cannot be\\nrepresented as a sum of positive and completely positive maps. This property is\\nweaker than extremality, however, it turns out that it plays a key role in\\ndetecting quantum entanglement.\",\"PeriodicalId\":501275,\"journal\":{\"name\":\"arXiv - PHYS - Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.02814\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.02814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
进一步分析了Bera et al. arXiv:2212.03807最近提出的$3 \ × 3$复矩阵代数中的一类线性正映射。它提供了在$M_3$中具有开创性的Choi不可分解极值映射的推广。我们研究了广义Choi映射何时是最优的,即不能表示为正和完全正映射的和。这种性质比极值性弱,然而,事实证明,它在探测量子纠缠方面起着关键作用。
A family of linear positive maps in the algebra of $3 \times 3$ complex
matrices proposed recently in Bera et al. arXiv:2212.03807 is further analyzed.
It provides a generalization of a seminal Choi nondecomposable extremal map in
$M_3$. We investigate when generalized Choi maps are optimal, i.e. cannot be
represented as a sum of positive and completely positive maps. This property is
weaker than extremality, however, it turns out that it plays a key role in
detecting quantum entanglement.