广义Choi映射在M_3中的最优性

Giovanni Scala, Anindita Bera, Gniewomir Sarbicki, Dariusz Chruściński
{"title":"广义Choi映射在M_3中的最优性","authors":"Giovanni Scala, Anindita Bera, Gniewomir Sarbicki, Dariusz Chruściński","doi":"arxiv-2312.02814","DOIUrl":null,"url":null,"abstract":"A family of linear positive maps in the algebra of $3 \\times 3$ complex\nmatrices proposed recently in Bera et al. arXiv:2212.03807 is further analyzed.\nIt provides a generalization of a seminal Choi nondecomposable extremal map in\n$M_3$. We investigate when generalized Choi maps are optimal, i.e. cannot be\nrepresented as a sum of positive and completely positive maps. This property is\nweaker than extremality, however, it turns out that it plays a key role in\ndetecting quantum entanglement.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimality of generalized Choi maps in $M_3$\",\"authors\":\"Giovanni Scala, Anindita Bera, Gniewomir Sarbicki, Dariusz Chruściński\",\"doi\":\"arxiv-2312.02814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A family of linear positive maps in the algebra of $3 \\\\times 3$ complex\\nmatrices proposed recently in Bera et al. arXiv:2212.03807 is further analyzed.\\nIt provides a generalization of a seminal Choi nondecomposable extremal map in\\n$M_3$. We investigate when generalized Choi maps are optimal, i.e. cannot be\\nrepresented as a sum of positive and completely positive maps. This property is\\nweaker than extremality, however, it turns out that it plays a key role in\\ndetecting quantum entanglement.\",\"PeriodicalId\":501275,\"journal\":{\"name\":\"arXiv - PHYS - Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.02814\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.02814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

进一步分析了Bera et al. arXiv:2212.03807最近提出的$3 \ × 3$复矩阵代数中的一类线性正映射。它提供了在$M_3$中具有开创性的Choi不可分解极值映射的推广。我们研究了广义Choi映射何时是最优的,即不能表示为正和完全正映射的和。这种性质比极值性弱,然而,事实证明,它在探测量子纠缠方面起着关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimality of generalized Choi maps in $M_3$
A family of linear positive maps in the algebra of $3 \times 3$ complex matrices proposed recently in Bera et al. arXiv:2212.03807 is further analyzed. It provides a generalization of a seminal Choi nondecomposable extremal map in $M_3$. We investigate when generalized Choi maps are optimal, i.e. cannot be represented as a sum of positive and completely positive maps. This property is weaker than extremality, however, it turns out that it plays a key role in detecting quantum entanglement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信