{"title":"智能家居自动化能源管理框架","authors":"Houssam Kanso, Adel Noureddine, Ernesto Exposito","doi":"10.3233/ais-220482","DOIUrl":null,"url":null,"abstract":"Over the last fifty years, societies across the world have experienced multiple periods of energy insufficiency with the most recent one being the 2022 global energy crisis. In addition, the electric power industry has been experiencing a steady increase in electricity consumption since the secondindustrial revolution because of the widespread usage of electrical appliances and devices. Newer devices are equipped with sensors and actuators, they can collect a large amount of data that could help in power management. However, current energy management approaches are mostly applied to limited types of devices in specific domains and are difficult to implement in other scenarios. They fail when it comes to their level of autonomy, flexibility, and genericity. To address these shortcomings, we present, in this paper, an automated energy management approach for connected environments based on generating power estimation models, representing a formal description of energy-related knowledge, and using reinforcement learning (RL) techniques to accomplish energy-efficient actions. The architecture of this approach is based on three main components: power estimation models, knowledge base, and intelligence module. Furthermore, we develop algorithms that exploit knowledge from both the power estimator and the ontology, to generate the corresponding RL agent and environment. We also present different reward functions based on user preferences and power consumption. We illustrate our proposal in the smart home domain. An implementation of the approach is developed and two validation experiments are conducted. Both case studies are deployed in the context of smart homes: (a) a living room with a variety of devices and (b) a smart home with a heating system. The obtained results show that our approach performs well given the low convergence period, the high level of user preferences satisfaction, and the significant decrease in energy consumption.","PeriodicalId":49316,"journal":{"name":"Journal of Ambient Intelligence and Smart Environments","volume":"46 5","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An automated energy management framework for smart homes\",\"authors\":\"Houssam Kanso, Adel Noureddine, Ernesto Exposito\",\"doi\":\"10.3233/ais-220482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the last fifty years, societies across the world have experienced multiple periods of energy insufficiency with the most recent one being the 2022 global energy crisis. In addition, the electric power industry has been experiencing a steady increase in electricity consumption since the secondindustrial revolution because of the widespread usage of electrical appliances and devices. Newer devices are equipped with sensors and actuators, they can collect a large amount of data that could help in power management. However, current energy management approaches are mostly applied to limited types of devices in specific domains and are difficult to implement in other scenarios. They fail when it comes to their level of autonomy, flexibility, and genericity. To address these shortcomings, we present, in this paper, an automated energy management approach for connected environments based on generating power estimation models, representing a formal description of energy-related knowledge, and using reinforcement learning (RL) techniques to accomplish energy-efficient actions. The architecture of this approach is based on three main components: power estimation models, knowledge base, and intelligence module. Furthermore, we develop algorithms that exploit knowledge from both the power estimator and the ontology, to generate the corresponding RL agent and environment. We also present different reward functions based on user preferences and power consumption. We illustrate our proposal in the smart home domain. An implementation of the approach is developed and two validation experiments are conducted. Both case studies are deployed in the context of smart homes: (a) a living room with a variety of devices and (b) a smart home with a heating system. The obtained results show that our approach performs well given the low convergence period, the high level of user preferences satisfaction, and the significant decrease in energy consumption.\",\"PeriodicalId\":49316,\"journal\":{\"name\":\"Journal of Ambient Intelligence and Smart Environments\",\"volume\":\"46 5\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ambient Intelligence and Smart Environments\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/ais-220482\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ambient Intelligence and Smart Environments","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ais-220482","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
An automated energy management framework for smart homes
Over the last fifty years, societies across the world have experienced multiple periods of energy insufficiency with the most recent one being the 2022 global energy crisis. In addition, the electric power industry has been experiencing a steady increase in electricity consumption since the secondindustrial revolution because of the widespread usage of electrical appliances and devices. Newer devices are equipped with sensors and actuators, they can collect a large amount of data that could help in power management. However, current energy management approaches are mostly applied to limited types of devices in specific domains and are difficult to implement in other scenarios. They fail when it comes to their level of autonomy, flexibility, and genericity. To address these shortcomings, we present, in this paper, an automated energy management approach for connected environments based on generating power estimation models, representing a formal description of energy-related knowledge, and using reinforcement learning (RL) techniques to accomplish energy-efficient actions. The architecture of this approach is based on three main components: power estimation models, knowledge base, and intelligence module. Furthermore, we develop algorithms that exploit knowledge from both the power estimator and the ontology, to generate the corresponding RL agent and environment. We also present different reward functions based on user preferences and power consumption. We illustrate our proposal in the smart home domain. An implementation of the approach is developed and two validation experiments are conducted. Both case studies are deployed in the context of smart homes: (a) a living room with a variety of devices and (b) a smart home with a heating system. The obtained results show that our approach performs well given the low convergence period, the high level of user preferences satisfaction, and the significant decrease in energy consumption.
期刊介绍:
The Journal of Ambient Intelligence and Smart Environments (JAISE) serves as a forum to discuss the latest developments on Ambient Intelligence (AmI) and Smart Environments (SmE). Given the multi-disciplinary nature of the areas involved, the journal aims to promote participation from several different communities covering topics ranging from enabling technologies such as multi-modal sensing and vision processing, to algorithmic aspects in interpretive and reasoning domains, to application-oriented efforts in human-centered services, as well as contributions from the fields of robotics, networking, HCI, mobile, collaborative and pervasive computing. This diversity stems from the fact that smart environments can be defined with a variety of different characteristics based on the applications they serve, their interaction models with humans, the practical system design aspects, as well as the multi-faceted conceptual and algorithmic considerations that would enable them to operate seamlessly and unobtrusively. The Journal of Ambient Intelligence and Smart Environments will focus on both the technical and application aspects of these.