关于某些受限平面分区和晶体熔化模型的评述

Chenglang Yang
{"title":"关于某些受限平面分区和晶体熔化模型的评述","authors":"Chenglang Yang","doi":"arxiv-2312.02749","DOIUrl":null,"url":null,"abstract":"In this paper, we provide formulas calculating the partition functions of two\ntypes of plane partitions using the crystal melting model method introduced by\nOkounkov, Reshetikhin and Vafa. As applications, we obtain a product formula\nfor the partition function of the plane partitions with a limit shape boundary.\nA corollary of this formula is the demonstration of the equivalence between\nthis partition function and the open-closed string amplitude of the\ndouble$-\\mathbb{P}^1$ model. We also derive a product formula for the partition\nfunction of symmetric plane partitions with a limit shape boundary.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A remark on certain restricted plane partitions and crystal melting model\",\"authors\":\"Chenglang Yang\",\"doi\":\"arxiv-2312.02749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we provide formulas calculating the partition functions of two\\ntypes of plane partitions using the crystal melting model method introduced by\\nOkounkov, Reshetikhin and Vafa. As applications, we obtain a product formula\\nfor the partition function of the plane partitions with a limit shape boundary.\\nA corollary of this formula is the demonstration of the equivalence between\\nthis partition function and the open-closed string amplitude of the\\ndouble$-\\\\mathbb{P}^1$ model. We also derive a product formula for the partition\\nfunction of symmetric plane partitions with a limit shape boundary.\",\"PeriodicalId\":501275,\"journal\":{\"name\":\"arXiv - PHYS - Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.02749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.02749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用okounkov、Reshetikhin和Vafa提出的晶体熔化模型方法,给出了两种平面划分配分函数的计算公式。作为应用,我们得到了具有极限形状边界的平面分区的配分函数的乘积公式。该公式的一个推论是证明了该配分函数与双$-\mathbb{P}^1$模型的开闭弦振幅之间的等价性。我们还导出了具有极限形状边界的对称平面分区函数的积公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A remark on certain restricted plane partitions and crystal melting model
In this paper, we provide formulas calculating the partition functions of two types of plane partitions using the crystal melting model method introduced by Okounkov, Reshetikhin and Vafa. As applications, we obtain a product formula for the partition function of the plane partitions with a limit shape boundary. A corollary of this formula is the demonstration of the equivalence between this partition function and the open-closed string amplitude of the double$-\mathbb{P}^1$ model. We also derive a product formula for the partition function of symmetric plane partitions with a limit shape boundary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信