平面多连通域上临界Ising模型初级场的玻色化

Baran Bayraktaroglu, Konstantin Izyurov, Tuomas Virtanen, Christian Webb
{"title":"平面多连通域上临界Ising模型初级场的玻色化","authors":"Baran Bayraktaroglu, Konstantin Izyurov, Tuomas Virtanen, Christian Webb","doi":"arxiv-2312.02960","DOIUrl":null,"url":null,"abstract":"We prove bosonization identities for the scaling limits of the critical Ising\ncorrelations in finitely-connected planar domains, expressing those in terms of\ncorrelations of the compactified Gaussian free field. This, in particular,\nyields explicit expressions for the Ising correlations in terms of domain's\nperiod matrix, Green's function, harmonic measures of boundary components and\narcs, or alternatively, Abelian differentials on the Schottky double. Our proof is based on a limiting version of a classical identity due to\nD.~Hejhal and J.~Fay relating Szeg\\H{o} kernels and Abelian differentials on\nRiemann surfaces, and a systematic use of operator product expansions both for\nthe Ising and the bosonic correlations.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bosonization of primary fields for the critical Ising model on multiply connected planar domains\",\"authors\":\"Baran Bayraktaroglu, Konstantin Izyurov, Tuomas Virtanen, Christian Webb\",\"doi\":\"arxiv-2312.02960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove bosonization identities for the scaling limits of the critical Ising\\ncorrelations in finitely-connected planar domains, expressing those in terms of\\ncorrelations of the compactified Gaussian free field. This, in particular,\\nyields explicit expressions for the Ising correlations in terms of domain's\\nperiod matrix, Green's function, harmonic measures of boundary components and\\narcs, or alternatively, Abelian differentials on the Schottky double. Our proof is based on a limiting version of a classical identity due to\\nD.~Hejhal and J.~Fay relating Szeg\\\\H{o} kernels and Abelian differentials on\\nRiemann surfaces, and a systematic use of operator product expansions both for\\nthe Ising and the bosonic correlations.\",\"PeriodicalId\":501275,\"journal\":{\"name\":\"arXiv - PHYS - Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.02960\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.02960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了有限连通平面域上临界isingcorrelation的尺度极限的玻色化恒等式,并用紧化高斯自由场的相关来表示。特别地,这产生了关于域周期矩阵、格林函数、边界分量和弧的调和测度,或者是肖特基二重上的阿贝尔微分的伊辛相关的显式表达式。我们的证明是基于一个经典恒等式的极限版本。关于Szeg\H{o}核和riemann曲面上的Abelian微分,以及对Ising和玻色子相关的算子积展开的系统使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bosonization of primary fields for the critical Ising model on multiply connected planar domains
We prove bosonization identities for the scaling limits of the critical Ising correlations in finitely-connected planar domains, expressing those in terms of correlations of the compactified Gaussian free field. This, in particular, yields explicit expressions for the Ising correlations in terms of domain's period matrix, Green's function, harmonic measures of boundary components and arcs, or alternatively, Abelian differentials on the Schottky double. Our proof is based on a limiting version of a classical identity due to D.~Hejhal and J.~Fay relating Szeg\H{o} kernels and Abelian differentials on Riemann surfaces, and a systematic use of operator product expansions both for the Ising and the bosonic correlations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信