复射影空间上一类新的距离

Rafał Bistroń, Michał Eckstein, Shmuel Friedland, Tomasz Miller, Karol Życzkowski
{"title":"复射影空间上一类新的距离","authors":"Rafał Bistroń, Michał Eckstein, Shmuel Friedland, Tomasz Miller, Karol Życzkowski","doi":"arxiv-2312.02583","DOIUrl":null,"url":null,"abstract":"The complex projective space $\\mathbb{P}(\\mathbb{C}^n)$ can be interpreted as\nthe space of all quantum pure states of size $n$. A distance on this space,\ninteresting from the perspective of quantum physics, can be induced from a\nclassical distance defined on the $n$-point probability simplex by the `earth\nmover problem'. We show that this construction leads to a quantity satisfying\nthe triangle inequality, which yields a true distance on complex projective\nspace belonging to the family of quantum $2$-Wasserstein distances.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":"8 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new class of distances on complex projective spaces\",\"authors\":\"Rafał Bistroń, Michał Eckstein, Shmuel Friedland, Tomasz Miller, Karol Życzkowski\",\"doi\":\"arxiv-2312.02583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The complex projective space $\\\\mathbb{P}(\\\\mathbb{C}^n)$ can be interpreted as\\nthe space of all quantum pure states of size $n$. A distance on this space,\\ninteresting from the perspective of quantum physics, can be induced from a\\nclassical distance defined on the $n$-point probability simplex by the `earth\\nmover problem'. We show that this construction leads to a quantity satisfying\\nthe triangle inequality, which yields a true distance on complex projective\\nspace belonging to the family of quantum $2$-Wasserstein distances.\",\"PeriodicalId\":501275,\"journal\":{\"name\":\"arXiv - PHYS - Mathematical Physics\",\"volume\":\"8 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.02583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.02583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

复投影空间$\mathbb{P}(\mathbb{C}^n)$可以解释为大小为$n$的所有量子纯态的空间。从量子物理学的角度来看,这个空间上的距离很有趣,它可以从“推土机问题”在n点概率单纯形上定义的经典距离中推导出来。我们证明了这种构造导致了一个满足三角不等式的量,它在复投影空间上产生了一个属于量子$2$-Wasserstein距离族的真距离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new class of distances on complex projective spaces
The complex projective space $\mathbb{P}(\mathbb{C}^n)$ can be interpreted as the space of all quantum pure states of size $n$. A distance on this space, interesting from the perspective of quantum physics, can be induced from a classical distance defined on the $n$-point probability simplex by the `earth mover problem'. We show that this construction leads to a quantity satisfying the triangle inequality, which yields a true distance on complex projective space belonging to the family of quantum $2$-Wasserstein distances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信