Rafał Bistroń, Michał Eckstein, Shmuel Friedland, Tomasz Miller, Karol Życzkowski
{"title":"复射影空间上一类新的距离","authors":"Rafał Bistroń, Michał Eckstein, Shmuel Friedland, Tomasz Miller, Karol Życzkowski","doi":"arxiv-2312.02583","DOIUrl":null,"url":null,"abstract":"The complex projective space $\\mathbb{P}(\\mathbb{C}^n)$ can be interpreted as\nthe space of all quantum pure states of size $n$. A distance on this space,\ninteresting from the perspective of quantum physics, can be induced from a\nclassical distance defined on the $n$-point probability simplex by the `earth\nmover problem'. We show that this construction leads to a quantity satisfying\nthe triangle inequality, which yields a true distance on complex projective\nspace belonging to the family of quantum $2$-Wasserstein distances.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":"8 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new class of distances on complex projective spaces\",\"authors\":\"Rafał Bistroń, Michał Eckstein, Shmuel Friedland, Tomasz Miller, Karol Życzkowski\",\"doi\":\"arxiv-2312.02583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The complex projective space $\\\\mathbb{P}(\\\\mathbb{C}^n)$ can be interpreted as\\nthe space of all quantum pure states of size $n$. A distance on this space,\\ninteresting from the perspective of quantum physics, can be induced from a\\nclassical distance defined on the $n$-point probability simplex by the `earth\\nmover problem'. We show that this construction leads to a quantity satisfying\\nthe triangle inequality, which yields a true distance on complex projective\\nspace belonging to the family of quantum $2$-Wasserstein distances.\",\"PeriodicalId\":501275,\"journal\":{\"name\":\"arXiv - PHYS - Mathematical Physics\",\"volume\":\"8 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.02583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.02583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new class of distances on complex projective spaces
The complex projective space $\mathbb{P}(\mathbb{C}^n)$ can be interpreted as
the space of all quantum pure states of size $n$. A distance on this space,
interesting from the perspective of quantum physics, can be induced from a
classical distance defined on the $n$-point probability simplex by the `earth
mover problem'. We show that this construction leads to a quantity satisfying
the triangle inequality, which yields a true distance on complex projective
space belonging to the family of quantum $2$-Wasserstein distances.