Hafiz Muhammad Obaid, Kinzah Noor, Maaz Tahir Malik, Abdul Rehman
{"title":"1990 ~ 2100 nm波分复用系统中高比特率掺钬光纤放大器的设计与分析","authors":"Hafiz Muhammad Obaid, Kinzah Noor, Maaz Tahir Malik, Abdul Rehman","doi":"10.1007/s10946-023-10181-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we focus on the performance optimization of Holmium-doped fiber amplifier (HDFA) for wavelength-division-multiplexed (WDM) optical communication system in the 1990 – 2100 nm wavelength range at higher bit rates. We investigate the proposed amplifier for 12<i>×</i>100 Gb/s WDM system at channel spacing of 10 nm. An average gain and noise figure of 32.17 and 8.2 dB, respectively, are obtained over the selected wavelength range at <i>−</i>25 dBm optimum input power per channel. An optimized Holmium-doped fiber (HDF) length of 9 m and HDFA-pump wavelength of 1950 nm are used. The operation and resulting gains of HDFA are also compared when pumped at different pumping wavelengths of 1890, 1950, and 2010 nm (fiber-laser-pumped HDFA) and 1150 nm (diode-pumped HDFA). Furthermore, the impacts of varying such parameters as the input signal power, HDF length, Ho<sup>3+</sup> concentration, and HDFA pump power on gain are also investigated.</p></div>","PeriodicalId":663,"journal":{"name":"Journal of Russian Laser Research","volume":"44 6","pages":"707 - 716"},"PeriodicalIF":0.7000,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Analysis of Holmium-Doped Fiber Amplifier for WDM System in 1990 – 2100 nm Wavelength Range at Higher Bit Rates\",\"authors\":\"Hafiz Muhammad Obaid, Kinzah Noor, Maaz Tahir Malik, Abdul Rehman\",\"doi\":\"10.1007/s10946-023-10181-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we focus on the performance optimization of Holmium-doped fiber amplifier (HDFA) for wavelength-division-multiplexed (WDM) optical communication system in the 1990 – 2100 nm wavelength range at higher bit rates. We investigate the proposed amplifier for 12<i>×</i>100 Gb/s WDM system at channel spacing of 10 nm. An average gain and noise figure of 32.17 and 8.2 dB, respectively, are obtained over the selected wavelength range at <i>−</i>25 dBm optimum input power per channel. An optimized Holmium-doped fiber (HDF) length of 9 m and HDFA-pump wavelength of 1950 nm are used. The operation and resulting gains of HDFA are also compared when pumped at different pumping wavelengths of 1890, 1950, and 2010 nm (fiber-laser-pumped HDFA) and 1150 nm (diode-pumped HDFA). Furthermore, the impacts of varying such parameters as the input signal power, HDF length, Ho<sup>3+</sup> concentration, and HDFA pump power on gain are also investigated.</p></div>\",\"PeriodicalId\":663,\"journal\":{\"name\":\"Journal of Russian Laser Research\",\"volume\":\"44 6\",\"pages\":\"707 - 716\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Russian Laser Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10946-023-10181-3\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Russian Laser Research","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10946-023-10181-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
Design and Analysis of Holmium-Doped Fiber Amplifier for WDM System in 1990 – 2100 nm Wavelength Range at Higher Bit Rates
In this paper, we focus on the performance optimization of Holmium-doped fiber amplifier (HDFA) for wavelength-division-multiplexed (WDM) optical communication system in the 1990 – 2100 nm wavelength range at higher bit rates. We investigate the proposed amplifier for 12×100 Gb/s WDM system at channel spacing of 10 nm. An average gain and noise figure of 32.17 and 8.2 dB, respectively, are obtained over the selected wavelength range at −25 dBm optimum input power per channel. An optimized Holmium-doped fiber (HDF) length of 9 m and HDFA-pump wavelength of 1950 nm are used. The operation and resulting gains of HDFA are also compared when pumped at different pumping wavelengths of 1890, 1950, and 2010 nm (fiber-laser-pumped HDFA) and 1150 nm (diode-pumped HDFA). Furthermore, the impacts of varying such parameters as the input signal power, HDF length, Ho3+ concentration, and HDFA pump power on gain are also investigated.
期刊介绍:
The journal publishes original, high-quality articles that follow new developments in all areas of laser research, including:
laser physics;
laser interaction with matter;
properties of laser beams;
laser thermonuclear fusion;
laser chemistry;
quantum and nonlinear optics;
optoelectronics;
solid state, gas, liquid, chemical, and semiconductor lasers.