{"title":"分数阶Rayleigh-Stokes方程Besov-Morrey空间解的适定性结果","authors":"Li Peng, Yong Zhou","doi":"10.1007/s12346-023-00897-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we prove a long time existence result for fractional Rayleigh-Stokes equations derived from a non-Newtonain fluid for a generalized second grade fluid with memory. More precisely, we discuss the existence, uniqueness, continuous dependence on initial value and asymptotic behavior of global solutions in Besov-Morrey spaces. The proof is based on real interpolation, resolvent operators and fixed point arguments. Our results are formulated that allows for a larger class in initial value than the previous works and the approach is also suitable for fractional diffusion cases.</p>","PeriodicalId":48886,"journal":{"name":"Qualitative Theory of Dynamical Systems","volume":"43 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Well-Posedness Results of Solutions in Besov-Morrey Spaces for Fractional Rayleigh-Stokes Equations\",\"authors\":\"Li Peng, Yong Zhou\",\"doi\":\"10.1007/s12346-023-00897-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we prove a long time existence result for fractional Rayleigh-Stokes equations derived from a non-Newtonain fluid for a generalized second grade fluid with memory. More precisely, we discuss the existence, uniqueness, continuous dependence on initial value and asymptotic behavior of global solutions in Besov-Morrey spaces. The proof is based on real interpolation, resolvent operators and fixed point arguments. Our results are formulated that allows for a larger class in initial value than the previous works and the approach is also suitable for fractional diffusion cases.</p>\",\"PeriodicalId\":48886,\"journal\":{\"name\":\"Qualitative Theory of Dynamical Systems\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Qualitative Theory of Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12346-023-00897-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qualitative Theory of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-023-00897-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The Well-Posedness Results of Solutions in Besov-Morrey Spaces for Fractional Rayleigh-Stokes Equations
In this paper, we prove a long time existence result for fractional Rayleigh-Stokes equations derived from a non-Newtonain fluid for a generalized second grade fluid with memory. More precisely, we discuss the existence, uniqueness, continuous dependence on initial value and asymptotic behavior of global solutions in Besov-Morrey spaces. The proof is based on real interpolation, resolvent operators and fixed point arguments. Our results are formulated that allows for a larger class in initial value than the previous works and the approach is also suitable for fractional diffusion cases.
期刊介绍:
Qualitative Theory of Dynamical Systems (QTDS) publishes high-quality peer-reviewed research articles on the theory and applications of discrete and continuous dynamical systems. The journal addresses mathematicians as well as engineers, physicists, and other scientists who use dynamical systems as valuable research tools. The journal is not interested in numerical results, except if these illustrate theoretical results previously proved.