奇异非线性分数阶拉普拉斯方程的Dirichlet问题

IF 1.9 3区 数学 Q1 MATHEMATICS
Jian Wang, Zhuoran Du
{"title":"奇异非线性分数阶拉普拉斯方程的Dirichlet问题","authors":"Jian Wang, Zhuoran Du","doi":"10.1007/s12346-023-00900-1","DOIUrl":null,"url":null,"abstract":"<p>We consider positive solutions of the Dirichlet problem for the fractional Laplace equation with singular nonlinearity </p><span>$$\\begin{aligned} {\\left\\{ \\begin{array}{ll} \\begin{aligned} &amp;{}(-\\Delta )^s {u}(x) = K(x)u^{-\\alpha }(x)+ \\mu u^{p-1}(x) &amp;{}&amp;{}\\hspace{0.4cm} \\hbox {in} \\hspace{0.2cm} \\Omega ,\\\\ &amp;{}u&gt;0 &amp;{}&amp;{}\\hspace{0.4cm} \\hbox {in} \\hspace{0.2cm}\\Omega ,\\\\ &amp;{} u=0 &amp;{}&amp;{} \\hspace{0.4cm}\\text{ in } \\hspace{0.2cm}\\Omega ^{c}:=\\mathbb R^N\\setminus \\Omega , \\end{aligned} \\end{array}\\right. } \\end{aligned}$$</span><p>where <span>\\(s\\in (0,1)\\)</span>, <span>\\(\\alpha &gt;0\\)</span> and <span>\\(\\Omega \\subset \\mathbb R^N\\)</span> is a bounded domain with smooth boundary <span>\\(\\partial \\Omega \\)</span> and <span>\\(N&gt;2s.\\)</span> Under some appropriate assumptions of <span>\\(\\alpha , p, \\mu \\)</span> and <i>K</i>, we obtain the existence of multiple weak solutions, and among them, including the minimal solution and a ground state solution. Radial symmetry of <span>\\( C^{1,1}_{loc}\\cap L^{\\infty }\\)</span> solutions are also established for subcritical exponent <i>p</i> when the domain is a ball. Nonexistence of <span>\\( C^{1,1}\\cap L^{\\infty }\\)</span> solutions are obtained for star-shaped domain under a condition of <i>K</i>.</p>","PeriodicalId":48886,"journal":{"name":"Qualitative Theory of Dynamical Systems","volume":"81 8","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dirichlet Problems for Fractional Laplace Equations with Singular Nonlinearity\",\"authors\":\"Jian Wang, Zhuoran Du\",\"doi\":\"10.1007/s12346-023-00900-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider positive solutions of the Dirichlet problem for the fractional Laplace equation with singular nonlinearity </p><span>$$\\\\begin{aligned} {\\\\left\\\\{ \\\\begin{array}{ll} \\\\begin{aligned} &amp;{}(-\\\\Delta )^s {u}(x) = K(x)u^{-\\\\alpha }(x)+ \\\\mu u^{p-1}(x) &amp;{}&amp;{}\\\\hspace{0.4cm} \\\\hbox {in} \\\\hspace{0.2cm} \\\\Omega ,\\\\\\\\ &amp;{}u&gt;0 &amp;{}&amp;{}\\\\hspace{0.4cm} \\\\hbox {in} \\\\hspace{0.2cm}\\\\Omega ,\\\\\\\\ &amp;{} u=0 &amp;{}&amp;{} \\\\hspace{0.4cm}\\\\text{ in } \\\\hspace{0.2cm}\\\\Omega ^{c}:=\\\\mathbb R^N\\\\setminus \\\\Omega , \\\\end{aligned} \\\\end{array}\\\\right. } \\\\end{aligned}$$</span><p>where <span>\\\\(s\\\\in (0,1)\\\\)</span>, <span>\\\\(\\\\alpha &gt;0\\\\)</span> and <span>\\\\(\\\\Omega \\\\subset \\\\mathbb R^N\\\\)</span> is a bounded domain with smooth boundary <span>\\\\(\\\\partial \\\\Omega \\\\)</span> and <span>\\\\(N&gt;2s.\\\\)</span> Under some appropriate assumptions of <span>\\\\(\\\\alpha , p, \\\\mu \\\\)</span> and <i>K</i>, we obtain the existence of multiple weak solutions, and among them, including the minimal solution and a ground state solution. Radial symmetry of <span>\\\\( C^{1,1}_{loc}\\\\cap L^{\\\\infty }\\\\)</span> solutions are also established for subcritical exponent <i>p</i> when the domain is a ball. Nonexistence of <span>\\\\( C^{1,1}\\\\cap L^{\\\\infty }\\\\)</span> solutions are obtained for star-shaped domain under a condition of <i>K</i>.</p>\",\"PeriodicalId\":48886,\"journal\":{\"name\":\"Qualitative Theory of Dynamical Systems\",\"volume\":\"81 8\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Qualitative Theory of Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12346-023-00900-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qualitative Theory of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-023-00900-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

考虑具有奇异非线性的分数阶拉普拉斯方程$$\begin{aligned} {\left\{ \begin{array}{ll} \begin{aligned} &{}(-\Delta )^s {u}(x) = K(x)u^{-\alpha }(x)+ \mu u^{p-1}(x) &{}&{}\hspace{0.4cm} \hbox {in} \hspace{0.2cm} \Omega ,\\ &{}u>0 &{}&{}\hspace{0.4cm} \hbox {in} \hspace{0.2cm}\Omega ,\\ &{} u=0 &{}&{} \hspace{0.4cm}\text{ in } \hspace{0.2cm}\Omega ^{c}:=\mathbb R^N\setminus \Omega , \end{aligned} \end{array}\right. } \end{aligned}$$的Dirichlet问题的正解,其中\(s\in (0,1)\), \(\alpha >0\)和\(\Omega \subset \mathbb R^N\)是光滑边界的有界区域\(\partial \Omega \)和\(N>2s.\),在适当的\(\alpha , p, \mu \)和K的假设下,我们得到了多个弱解的存在性,其中包括最小解和一个基态解。当区域为球时,建立了次临界指数p的径向对称性\( C^{1,1}_{loc}\cap L^{\infty }\)解。在K条件下,得到了星形区域\( C^{1,1}\cap L^{\infty }\)解的不存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dirichlet Problems for Fractional Laplace Equations with Singular Nonlinearity

We consider positive solutions of the Dirichlet problem for the fractional Laplace equation with singular nonlinearity

$$\begin{aligned} {\left\{ \begin{array}{ll} \begin{aligned} &{}(-\Delta )^s {u}(x) = K(x)u^{-\alpha }(x)+ \mu u^{p-1}(x) &{}&{}\hspace{0.4cm} \hbox {in} \hspace{0.2cm} \Omega ,\\ &{}u>0 &{}&{}\hspace{0.4cm} \hbox {in} \hspace{0.2cm}\Omega ,\\ &{} u=0 &{}&{} \hspace{0.4cm}\text{ in } \hspace{0.2cm}\Omega ^{c}:=\mathbb R^N\setminus \Omega , \end{aligned} \end{array}\right. } \end{aligned}$$

where \(s\in (0,1)\), \(\alpha >0\) and \(\Omega \subset \mathbb R^N\) is a bounded domain with smooth boundary \(\partial \Omega \) and \(N>2s.\) Under some appropriate assumptions of \(\alpha , p, \mu \) and K, we obtain the existence of multiple weak solutions, and among them, including the minimal solution and a ground state solution. Radial symmetry of \( C^{1,1}_{loc}\cap L^{\infty }\) solutions are also established for subcritical exponent p when the domain is a ball. Nonexistence of \( C^{1,1}\cap L^{\infty }\) solutions are obtained for star-shaped domain under a condition of K.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Qualitative Theory of Dynamical Systems
Qualitative Theory of Dynamical Systems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.50
自引率
14.30%
发文量
130
期刊介绍: Qualitative Theory of Dynamical Systems (QTDS) publishes high-quality peer-reviewed research articles on the theory and applications of discrete and continuous dynamical systems. The journal addresses mathematicians as well as engineers, physicists, and other scientists who use dynamical systems as valuable research tools. The journal is not interested in numerical results, except if these illustrate theoretical results previously proved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信