社会网络群体利益最大化问题的非子模块模型

Q1 Mathematics
Jianming Zhu, Smita Ghosh, Weili Wu, Chuangen Gao
{"title":"社会网络群体利益最大化问题的非子模块模型","authors":"Jianming Zhu, Smita Ghosh, Weili Wu, Chuangen Gao","doi":"10.1186/s40649-020-00085-6","DOIUrl":null,"url":null,"abstract":"In social networks, there exist many kinds of groups in which people may have the same interests, hobbies, or political orientation. Sometimes, group decisions are made by simply majority, which means that most of the users in this group reach an agreement, such as US Presidential Elections. A group is called activated if $$\\beta$$ percent of users are influenced in the group. Enterprise will gain income from all influenced groups. Simultaneously, to propagate influence, enterprise needs pay advertisement diffusion cost. Group profit maximization (GPM) problem aims to pick k seeds to maximize the expected profit that considers the benefit of influenced groups with the diffusion cost. GPM is proved to be NP-hard and the objective function is proved to be neither submodular nor supermodular. An upper bound and a lower bound which are difference of two submodular functions are designed. We propose a submodular–modular algorithm (SMA) to solve the difference of two submodular functions and SMA is shown to converge to a local optimal. We present an randomized algorithm based on weighted group coverage maximization for GPM and apply sandwich framework to get theoretical results. Our experiments verify the efficiency of our methods.","PeriodicalId":52145,"journal":{"name":"Computational Social Networks","volume":"23 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-submodular model for group profit maximization problem in social networks\",\"authors\":\"Jianming Zhu, Smita Ghosh, Weili Wu, Chuangen Gao\",\"doi\":\"10.1186/s40649-020-00085-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In social networks, there exist many kinds of groups in which people may have the same interests, hobbies, or political orientation. Sometimes, group decisions are made by simply majority, which means that most of the users in this group reach an agreement, such as US Presidential Elections. A group is called activated if $$\\\\beta$$ percent of users are influenced in the group. Enterprise will gain income from all influenced groups. Simultaneously, to propagate influence, enterprise needs pay advertisement diffusion cost. Group profit maximization (GPM) problem aims to pick k seeds to maximize the expected profit that considers the benefit of influenced groups with the diffusion cost. GPM is proved to be NP-hard and the objective function is proved to be neither submodular nor supermodular. An upper bound and a lower bound which are difference of two submodular functions are designed. We propose a submodular–modular algorithm (SMA) to solve the difference of two submodular functions and SMA is shown to converge to a local optimal. We present an randomized algorithm based on weighted group coverage maximization for GPM and apply sandwich framework to get theoretical results. Our experiments verify the efficiency of our methods.\",\"PeriodicalId\":52145,\"journal\":{\"name\":\"Computational Social Networks\",\"volume\":\"23 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Social Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40649-020-00085-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Social Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40649-020-00085-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在社交网络中,存在着各种各样的群体,其中的人们可能有相同的兴趣、爱好或政治取向。有时,群体决策是由简单的多数人做出的,这意味着这个群体中的大多数用户达成了一致,比如美国总统选举。如果群组中有$$\beta$$百分比的用户受到影响,则称为激活群组。企业将从所有受影响的群体中获得收益。同时,为了传播影响力,企业需要支付广告扩散成本。群体利润最大化(GPM)问题的目标是在考虑受影响群体的利益和扩散成本的情况下,选取k粒种子,使期望利润最大化。证明了GPM是np困难的,并且证明了目标函数既不是子模也不是超模。设计了两个子模函数之差的上界和下界。我们提出了一种求解两个子模函数之差的子模-模算法(SMA),并证明SMA收敛于局部最优。提出了一种基于加权群覆盖最大化的随机化GPM算法,并应用三明治框架得到了理论结果。我们的实验验证了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-submodular model for group profit maximization problem in social networks
In social networks, there exist many kinds of groups in which people may have the same interests, hobbies, or political orientation. Sometimes, group decisions are made by simply majority, which means that most of the users in this group reach an agreement, such as US Presidential Elections. A group is called activated if $$\beta$$ percent of users are influenced in the group. Enterprise will gain income from all influenced groups. Simultaneously, to propagate influence, enterprise needs pay advertisement diffusion cost. Group profit maximization (GPM) problem aims to pick k seeds to maximize the expected profit that considers the benefit of influenced groups with the diffusion cost. GPM is proved to be NP-hard and the objective function is proved to be neither submodular nor supermodular. An upper bound and a lower bound which are difference of two submodular functions are designed. We propose a submodular–modular algorithm (SMA) to solve the difference of two submodular functions and SMA is shown to converge to a local optimal. We present an randomized algorithm based on weighted group coverage maximization for GPM and apply sandwich framework to get theoretical results. Our experiments verify the efficiency of our methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Social Networks
Computational Social Networks Mathematics-Modeling and Simulation
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊介绍: Computational Social Networks showcases refereed papers dealing with all mathematical, computational and applied aspects of social computing. The objective of this journal is to advance and promote the theoretical foundation, mathematical aspects, and applications of social computing. Submissions are welcome which focus on common principles, algorithms and tools that govern network structures/topologies, network functionalities, security and privacy, network behaviors, information diffusions and influence, social recommendation systems which are applicable to all types of social networks and social media. Topics include (but are not limited to) the following: -Social network design and architecture -Mathematical modeling and analysis -Real-world complex networks -Information retrieval in social contexts, political analysts -Network structure analysis -Network dynamics optimization -Complex network robustness and vulnerability -Information diffusion models and analysis -Security and privacy -Searching in complex networks -Efficient algorithms -Network behaviors -Trust and reputation -Social Influence -Social Recommendation -Social media analysis -Big data analysis on online social networks This journal publishes rigorously refereed papers dealing with all mathematical, computational and applied aspects of social computing. The journal also includes reviews of appropriate books as special issues on hot topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信