基于协同进化过程的用户行为策略建模与分析

Q1 Mathematics
Yutaro Miura, Fujio Toriumi, Toshiharu Sugawara
{"title":"基于协同进化过程的用户行为策略建模与分析","authors":"Yutaro Miura, Fujio Toriumi, Toshiharu Sugawara","doi":"10.1186/s40649-021-00092-1","DOIUrl":null,"url":null,"abstract":"Social networking services (SNSs) are constantly used by a large number of people with various motivations and intentions depending on their social relationships and purposes, and thus, resulting in diverse strategies of posting/consuming content on SNSs. Therefore, it is important to understand the differences of the individual strategies depending on their network locations and surroundings. For this purpose, by using a game-theoretical model of users called agents and proposing a co-evolutionary algorithm called multiple-world genetic algorithm to evolve diverse strategy for each user, we investigated the differences in individual strategies and compared the results in artificial networks and those of the Facebook ego network. From our experiments, we found that agents did not select the free rider strategy, which means that just reading the articles and comments posted by other users, in the Facebook network, although this strategy is usually cost-effective and usually appeared in the artificial networks. We also found that the agents who mainly comment on posted articles/comments and rarely post their own articles appear in the Facebook network but do not appear in the connecting nearest-neighbor networks, although we think that this kind of user actually exists in real-world SNSs. Our experimental simulation also revealed that the number of friends was a crucial factor to identify users’ strategies on SNSs through the analysis of the impact of the differences in the reward for a comment on various ego networks.","PeriodicalId":52145,"journal":{"name":"Computational Social Networks","volume":"14 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Modeling and analyzing users’ behavioral strategies with co-evolutionary process\",\"authors\":\"Yutaro Miura, Fujio Toriumi, Toshiharu Sugawara\",\"doi\":\"10.1186/s40649-021-00092-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social networking services (SNSs) are constantly used by a large number of people with various motivations and intentions depending on their social relationships and purposes, and thus, resulting in diverse strategies of posting/consuming content on SNSs. Therefore, it is important to understand the differences of the individual strategies depending on their network locations and surroundings. For this purpose, by using a game-theoretical model of users called agents and proposing a co-evolutionary algorithm called multiple-world genetic algorithm to evolve diverse strategy for each user, we investigated the differences in individual strategies and compared the results in artificial networks and those of the Facebook ego network. From our experiments, we found that agents did not select the free rider strategy, which means that just reading the articles and comments posted by other users, in the Facebook network, although this strategy is usually cost-effective and usually appeared in the artificial networks. We also found that the agents who mainly comment on posted articles/comments and rarely post their own articles appear in the Facebook network but do not appear in the connecting nearest-neighbor networks, although we think that this kind of user actually exists in real-world SNSs. Our experimental simulation also revealed that the number of friends was a crucial factor to identify users’ strategies on SNSs through the analysis of the impact of the differences in the reward for a comment on various ego networks.\",\"PeriodicalId\":52145,\"journal\":{\"name\":\"Computational Social Networks\",\"volume\":\"14 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Social Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40649-021-00092-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Social Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40649-021-00092-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

摘要

社交网络服务(Social networking services, sns)被大量的人不断使用,根据他们的社交关系和目的,他们有各种各样的动机和意图,从而导致在社交网络服务上发布/消费内容的策略多种多样。因此,了解不同网络位置和环境下个体策略的差异是很重要的。为此,我们采用了一种称为agent的用户博弈论模型,并提出了一种称为多世界遗传算法的协同进化算法,为每个用户进化出不同的策略,研究了个体策略的差异,并比较了人工网络和Facebook自我网络的结果。从我们的实验中,我们发现agent没有选择free rider策略,即在Facebook网络中只阅读其他用户发表的文章和评论,尽管这种策略通常是具有成本效益的,并且通常出现在人工网络中。我们还发现,在Facebook网络中出现了主要评论别人发表的文章/评论,很少发表自己文章的代理,但在连接的最近邻居网络中却没有出现,尽管我们认为这种用户在现实世界的sns中确实存在。我们的实验模拟还通过分析不同自我网络上评论奖励差异的影响,揭示了朋友数量是识别用户在社交网络上的策略的关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling and analyzing users’ behavioral strategies with co-evolutionary process
Social networking services (SNSs) are constantly used by a large number of people with various motivations and intentions depending on their social relationships and purposes, and thus, resulting in diverse strategies of posting/consuming content on SNSs. Therefore, it is important to understand the differences of the individual strategies depending on their network locations and surroundings. For this purpose, by using a game-theoretical model of users called agents and proposing a co-evolutionary algorithm called multiple-world genetic algorithm to evolve diverse strategy for each user, we investigated the differences in individual strategies and compared the results in artificial networks and those of the Facebook ego network. From our experiments, we found that agents did not select the free rider strategy, which means that just reading the articles and comments posted by other users, in the Facebook network, although this strategy is usually cost-effective and usually appeared in the artificial networks. We also found that the agents who mainly comment on posted articles/comments and rarely post their own articles appear in the Facebook network but do not appear in the connecting nearest-neighbor networks, although we think that this kind of user actually exists in real-world SNSs. Our experimental simulation also revealed that the number of friends was a crucial factor to identify users’ strategies on SNSs through the analysis of the impact of the differences in the reward for a comment on various ego networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Social Networks
Computational Social Networks Mathematics-Modeling and Simulation
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊介绍: Computational Social Networks showcases refereed papers dealing with all mathematical, computational and applied aspects of social computing. The objective of this journal is to advance and promote the theoretical foundation, mathematical aspects, and applications of social computing. Submissions are welcome which focus on common principles, algorithms and tools that govern network structures/topologies, network functionalities, security and privacy, network behaviors, information diffusions and influence, social recommendation systems which are applicable to all types of social networks and social media. Topics include (but are not limited to) the following: -Social network design and architecture -Mathematical modeling and analysis -Real-world complex networks -Information retrieval in social contexts, political analysts -Network structure analysis -Network dynamics optimization -Complex network robustness and vulnerability -Information diffusion models and analysis -Security and privacy -Searching in complex networks -Efficient algorithms -Network behaviors -Trust and reputation -Social Influence -Social Recommendation -Social media analysis -Big data analysis on online social networks This journal publishes rigorously refereed papers dealing with all mathematical, computational and applied aspects of social computing. The journal also includes reviews of appropriate books as special issues on hot topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信