{"title":"多离散需求的顺序选择模型","authors":"Sanghak Lee, Sunghoon Kim, Sungho Park","doi":"10.1007/s11129-022-09250-9","DOIUrl":null,"url":null,"abstract":"<p>Consumer demand in a marketplace is often characterized to be multiple discrete in that discrete units of multiple products are chosen together. This paper develops a sequential choice model for such demand and its estimation technique. Given an inherently high-dimensional problem to solve, a consumer is assumed to simplify it to a sequence of one-unit choices, which eventually leads to a shopping basket of multiple discreteness. Our model and its estimation method are flexible enough to be extended to various contexts such as complementary demand, non-linear pricing, and multiple constraints. The sequential choice process generally finds an optimal solution of a convex problem (e.g., maximizing a concave utility function over a convex feasible set), while it might result in a sub-optimal solution for a non-convex problem. Therefore, in case of a convex optimization problem, the proposed model can be viewed as an econometrician’s means for establishing the optimality of observed demand, offering a practical estimation algorithm for discrete optimization models of consumer demand. We demonstrate the strengths of our model in a variety of simulation studies and an empirical application to consumer panel data of yogurt purchase.</p>","PeriodicalId":501397,"journal":{"name":"Quantitative Marketing and Economics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A sequential choice model for multiple discrete demand\",\"authors\":\"Sanghak Lee, Sunghoon Kim, Sungho Park\",\"doi\":\"10.1007/s11129-022-09250-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Consumer demand in a marketplace is often characterized to be multiple discrete in that discrete units of multiple products are chosen together. This paper develops a sequential choice model for such demand and its estimation technique. Given an inherently high-dimensional problem to solve, a consumer is assumed to simplify it to a sequence of one-unit choices, which eventually leads to a shopping basket of multiple discreteness. Our model and its estimation method are flexible enough to be extended to various contexts such as complementary demand, non-linear pricing, and multiple constraints. The sequential choice process generally finds an optimal solution of a convex problem (e.g., maximizing a concave utility function over a convex feasible set), while it might result in a sub-optimal solution for a non-convex problem. Therefore, in case of a convex optimization problem, the proposed model can be viewed as an econometrician’s means for establishing the optimality of observed demand, offering a practical estimation algorithm for discrete optimization models of consumer demand. We demonstrate the strengths of our model in a variety of simulation studies and an empirical application to consumer panel data of yogurt purchase.</p>\",\"PeriodicalId\":501397,\"journal\":{\"name\":\"Quantitative Marketing and Economics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantitative Marketing and Economics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11129-022-09250-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Marketing and Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11129-022-09250-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A sequential choice model for multiple discrete demand
Consumer demand in a marketplace is often characterized to be multiple discrete in that discrete units of multiple products are chosen together. This paper develops a sequential choice model for such demand and its estimation technique. Given an inherently high-dimensional problem to solve, a consumer is assumed to simplify it to a sequence of one-unit choices, which eventually leads to a shopping basket of multiple discreteness. Our model and its estimation method are flexible enough to be extended to various contexts such as complementary demand, non-linear pricing, and multiple constraints. The sequential choice process generally finds an optimal solution of a convex problem (e.g., maximizing a concave utility function over a convex feasible set), while it might result in a sub-optimal solution for a non-convex problem. Therefore, in case of a convex optimization problem, the proposed model can be viewed as an econometrician’s means for establishing the optimality of observed demand, offering a practical estimation algorithm for discrete optimization models of consumer demand. We demonstrate the strengths of our model in a variety of simulation studies and an empirical application to consumer panel data of yogurt purchase.