关于闭合凸锥上的CCR和CAR流的注释

Pub Date : 2022-01-12 DOI:10.1142/s0219025721500211
Anbu Arjunan
{"title":"关于闭合凸锥上的CCR和CAR流的注释","authors":"Anbu Arjunan","doi":"10.1142/s0219025721500211","DOIUrl":null,"url":null,"abstract":"For a closed convex cone <inline-formula><mml:math display=\"inline\" overflow=\"scroll\"><mml:mi>P</mml:mi></mml:math></inline-formula> in <inline-formula><mml:math display=\"inline\" overflow=\"scroll\"><mml:msup><mml:mrow><mml:mi>ℝ</mml:mi></mml:mrow><mml:mrow><mml:mi>d</mml:mi></mml:mrow></mml:msup></mml:math></inline-formula> which is spanning and pointed, i.e. <inline-formula><mml:math display=\"inline\" overflow=\"scroll\"><mml:mi>P</mml:mi> <mml:mo stretchy=\"false\">−</mml:mo> <mml:mi>P</mml:mi> <mml:mo>=</mml:mo> <mml:msup><mml:mrow><mml:mi>ℝ</mml:mi></mml:mrow><mml:mrow><mml:mi>d</mml:mi></mml:mrow></mml:msup></mml:math></inline-formula> and <inline-formula><mml:math display=\"inline\" overflow=\"scroll\"><mml:mi>P</mml:mi> <mml:mo stretchy=\"false\">∩</mml:mo><mml:mo stretchy=\"false\">−</mml:mo><mml:mi>P</mml:mi> <mml:mo>=</mml:mo> <mml:mo stretchy=\"false\">{</mml:mo><mml:mn>0</mml:mn><mml:mo stretchy=\"false\">}</mml:mo><mml:mo>,</mml:mo></mml:math></inline-formula> we consider a family of <inline-formula><mml:math display=\"inline\" overflow=\"scroll\"><mml:msub><mml:mrow><mml:mi>E</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msub></mml:math></inline-formula>-semigroups over <inline-formula><mml:math display=\"inline\" overflow=\"scroll\"><mml:mi>P</mml:mi></mml:math></inline-formula> consisting of a certain family of CCR flows and CAR flows over <inline-formula><mml:math display=\"inline\" overflow=\"scroll\"><mml:mi>P</mml:mi></mml:math></inline-formula> and classify them up to the cocycle conjugacy.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remarks on CCR and CAR flows over closed convex cones\",\"authors\":\"Anbu Arjunan\",\"doi\":\"10.1142/s0219025721500211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a closed convex cone <inline-formula><mml:math display=\\\"inline\\\" overflow=\\\"scroll\\\"><mml:mi>P</mml:mi></mml:math></inline-formula> in <inline-formula><mml:math display=\\\"inline\\\" overflow=\\\"scroll\\\"><mml:msup><mml:mrow><mml:mi>ℝ</mml:mi></mml:mrow><mml:mrow><mml:mi>d</mml:mi></mml:mrow></mml:msup></mml:math></inline-formula> which is spanning and pointed, i.e. <inline-formula><mml:math display=\\\"inline\\\" overflow=\\\"scroll\\\"><mml:mi>P</mml:mi> <mml:mo stretchy=\\\"false\\\">−</mml:mo> <mml:mi>P</mml:mi> <mml:mo>=</mml:mo> <mml:msup><mml:mrow><mml:mi>ℝ</mml:mi></mml:mrow><mml:mrow><mml:mi>d</mml:mi></mml:mrow></mml:msup></mml:math></inline-formula> and <inline-formula><mml:math display=\\\"inline\\\" overflow=\\\"scroll\\\"><mml:mi>P</mml:mi> <mml:mo stretchy=\\\"false\\\">∩</mml:mo><mml:mo stretchy=\\\"false\\\">−</mml:mo><mml:mi>P</mml:mi> <mml:mo>=</mml:mo> <mml:mo stretchy=\\\"false\\\">{</mml:mo><mml:mn>0</mml:mn><mml:mo stretchy=\\\"false\\\">}</mml:mo><mml:mo>,</mml:mo></mml:math></inline-formula> we consider a family of <inline-formula><mml:math display=\\\"inline\\\" overflow=\\\"scroll\\\"><mml:msub><mml:mrow><mml:mi>E</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msub></mml:math></inline-formula>-semigroups over <inline-formula><mml:math display=\\\"inline\\\" overflow=\\\"scroll\\\"><mml:mi>P</mml:mi></mml:math></inline-formula> consisting of a certain family of CCR flows and CAR flows over <inline-formula><mml:math display=\\\"inline\\\" overflow=\\\"scroll\\\"><mml:mi>P</mml:mi></mml:math></inline-formula> and classify them up to the cocycle conjugacy.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219025721500211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219025721500211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于一个张成且有点的闭凸锥P,即P−P =∈,P∩−P ={0},我们考虑P上由若干CCR流和CAR流组成的e0 -半群族,并将它们划分到环共轭。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Remarks on CCR and CAR flows over closed convex cones
For a closed convex cone P in d which is spanning and pointed, i.e. P P = d and P P = {0}, we consider a family of E0-semigroups over P consisting of a certain family of CCR flows and CAR flows over P and classify them up to the cocycle conjugacy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信