shearlets的新结构

Pub Date : 2022-09-30 DOI:10.1142/s0219025722500217
Pooran Ghaderihasab, Ahmad Ahmadi
{"title":"shearlets的新结构","authors":"Pooran Ghaderihasab, Ahmad Ahmadi","doi":"10.1142/s0219025722500217","DOIUrl":null,"url":null,"abstract":"<p>In order to achieve optimally sparse approximations of signals exhibiting anisotropic singularities, the shearlet systems that are systems of functions generated by one generator with dilation, shear transformation and translation operators applied to it were introduced. In this paper, we will construct the shearlet systems that are not only Parseval frames for <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">(</mo><msup><mrow><mi>ℝ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">)</mo></math></span><span></span> but they are also obtained from an <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>A</mi><mi>B</mi></math></span><span></span>-MRA associated with wavelet multiresolution, and by using this approach, we obtain the corresponding filters for these systems. For this purpose, the tensor product of the corresponding wavelet scaling function and a compact support bump function is used to construct the scaling function associated with the shearlet.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new construction of shearlets\",\"authors\":\"Pooran Ghaderihasab, Ahmad Ahmadi\",\"doi\":\"10.1142/s0219025722500217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In order to achieve optimally sparse approximations of signals exhibiting anisotropic singularities, the shearlet systems that are systems of functions generated by one generator with dilation, shear transformation and translation operators applied to it were introduced. In this paper, we will construct the shearlet systems that are not only Parseval frames for <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\\\"false\\\">(</mo><msup><mrow><mi>ℝ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> but they are also obtained from an <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>A</mi><mi>B</mi></math></span><span></span>-MRA associated with wavelet multiresolution, and by using this approach, we obtain the corresponding filters for these systems. For this purpose, the tensor product of the corresponding wavelet scaling function and a compact support bump function is used to construct the scaling function associated with the shearlet.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219025722500217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219025722500217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了获得具有各向异性奇异性的信号的最优稀疏逼近,引入了shearlet系统,该系统是由一个发生器产生的函数系统,并对其应用了膨胀、剪切变换和平移算子。在本文中,我们将构造L2(∈2)的shearlet系统,它们不仅是Parseval帧,而且是由与小波多分辨率相关的AB-MRA获得的,并利用这种方法获得了这些系统的相应滤波器。为此,使用相应小波尺度函数与紧凑支撑凹凸函数的张量积来构造与shearlet相关的尺度函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A new construction of shearlets

In order to achieve optimally sparse approximations of signals exhibiting anisotropic singularities, the shearlet systems that are systems of functions generated by one generator with dilation, shear transformation and translation operators applied to it were introduced. In this paper, we will construct the shearlet systems that are not only Parseval frames for L2(2) but they are also obtained from an AB-MRA associated with wavelet multiresolution, and by using this approach, we obtain the corresponding filters for these systems. For this purpose, the tensor product of the corresponding wavelet scaling function and a compact support bump function is used to construct the scaling function associated with the shearlet.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信