预混合甲烷-空气火焰在矩形障碍室内传播的亚网格尺度模型

IF 0.9 4区 工程技术 Q4 ENERGY & FUELS
G. Luo, L. J. Zhang, J. Q. Fang
{"title":"预混合甲烷-空气火焰在矩形障碍室内传播的亚网格尺度模型","authors":"G. Luo, L. J. Zhang, J. Q. Fang","doi":"10.1134/s0010508223050155","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Experimental and numerical studies of premixed methane–air flame dynamics in an obstructed chamber are carried out. In the experiment, high-speed video photography and pressure transducer measurements are used to study the combustion dynamics. In the numerical simulation, three subgrid-scale viscosity models and three subgrid-scale combustion models are selected to evaluate their individual predictions compared to the experimental data. The high-speed photographs show that the flame propagation process can be divided into four typical stages. When the flame front passes through the obstacle, two distinct vortex structures are formed. The volute flame is the result of the flame–vortex interaction. In addition, the combustion regime experiences a transition from “wrinkled flamelets\" to “corrugated flamelets\" and finally arrives at a “thin reaction zone regime.\"</p>","PeriodicalId":10509,"journal":{"name":"Combustion, Explosion, and Shock Waves","volume":"16 3","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subgrid-Scale Models for Predicting Premixed Methane–Air Flame Propagating in a Chamber with a Rectangular Obstacle\",\"authors\":\"G. Luo, L. J. Zhang, J. Q. Fang\",\"doi\":\"10.1134/s0010508223050155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Experimental and numerical studies of premixed methane–air flame dynamics in an obstructed chamber are carried out. In the experiment, high-speed video photography and pressure transducer measurements are used to study the combustion dynamics. In the numerical simulation, three subgrid-scale viscosity models and three subgrid-scale combustion models are selected to evaluate their individual predictions compared to the experimental data. The high-speed photographs show that the flame propagation process can be divided into four typical stages. When the flame front passes through the obstacle, two distinct vortex structures are formed. The volute flame is the result of the flame–vortex interaction. In addition, the combustion regime experiences a transition from “wrinkled flamelets\\\" to “corrugated flamelets\\\" and finally arrives at a “thin reaction zone regime.\\\"</p>\",\"PeriodicalId\":10509,\"journal\":{\"name\":\"Combustion, Explosion, and Shock Waves\",\"volume\":\"16 3\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combustion, Explosion, and Shock Waves\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1134/s0010508223050155\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion, Explosion, and Shock Waves","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1134/s0010508223050155","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

摘要对密闭室内预混甲烷-空气火焰动力学进行了实验和数值研究。在实验中,采用高速视频摄影和压力传感器测量来研究燃烧动力学。在数值模拟中,选取了3个亚栅格尺度的黏度模型和3个亚栅格尺度的燃烧模型,将它们各自的预测结果与实验数据进行比较。高速照片表明,火焰的传播过程可分为四个典型阶段。当火焰锋面穿过障碍物时,形成两个截然不同的涡流结构。蜗壳火焰是火焰-涡相互作用的结果。此外,燃烧状态经历了从“皱状小火焰”到“波纹状小火焰”的过渡,最终到达“薄反应区状态”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Subgrid-Scale Models for Predicting Premixed Methane–Air Flame Propagating in a Chamber with a Rectangular Obstacle

Subgrid-Scale Models for Predicting Premixed Methane–Air Flame Propagating in a Chamber with a Rectangular Obstacle

Abstract

Experimental and numerical studies of premixed methane–air flame dynamics in an obstructed chamber are carried out. In the experiment, high-speed video photography and pressure transducer measurements are used to study the combustion dynamics. In the numerical simulation, three subgrid-scale viscosity models and three subgrid-scale combustion models are selected to evaluate their individual predictions compared to the experimental data. The high-speed photographs show that the flame propagation process can be divided into four typical stages. When the flame front passes through the obstacle, two distinct vortex structures are formed. The volute flame is the result of the flame–vortex interaction. In addition, the combustion regime experiences a transition from “wrinkled flamelets" to “corrugated flamelets" and finally arrives at a “thin reaction zone regime."

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combustion, Explosion, and Shock Waves
Combustion, Explosion, and Shock Waves 工程技术-材料科学:综合
CiteScore
1.60
自引率
16.70%
发文量
56
审稿时长
5.7 months
期刊介绍: Combustion, Explosion, and Shock Waves a peer reviewed journal published in collaboration with the Siberian Branch of the Russian Academy of Sciences. The journal presents top-level studies in the physics and chemistry of combustion and detonation processes, structural and chemical transformation of matter in shock and detonation waves, and related phenomena. Each issue contains valuable information on initiation of detonation in condensed and gaseous phases, environmental consequences of combustion and explosion, engine and power unit combustion, production of new materials by shock and detonation waves, explosion welding, explosive compaction of powders, dynamic responses of materials and constructions, and hypervelocity impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信