自适应系统的不确定性感知仿真

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Jean-Marc Jézéquel, Antonio Vallecillo
{"title":"自适应系统的不确定性感知仿真","authors":"Jean-Marc Jézéquel, Antonio Vallecillo","doi":"https://dl.acm.org/doi/10.1145/3589517","DOIUrl":null,"url":null,"abstract":"<p>Adaptive systems manage and regulate the behavior of devices or other systems using control loops to automatically adjust the value of some measured variables to equal the value of a desired set-point. These systems normally interact with physical parts or operate in physical environments, where uncertainty is unavoidable. Traditional approaches to manage that uncertainty use either robust control algorithms that consider bounded variations of the uncertain variables and worst-case scenarios or adaptive control methods that estimate the parameters and change the control laws accordingly. In this article, we propose to include the sources of uncertainty in the system models as first-class entities using random variables to simulate adaptive and control systems more faithfully, including not only the use of random variables to represent and operate with uncertain values but also to represent decisions based on their comparisons. Two exemplar systems are used to illustrate and validate our proposal.</p>","PeriodicalId":50943,"journal":{"name":"ACM Transactions on Modeling and Computer Simulation","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncertainty-aware Simulation of Adaptive Systems\",\"authors\":\"Jean-Marc Jézéquel, Antonio Vallecillo\",\"doi\":\"https://dl.acm.org/doi/10.1145/3589517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Adaptive systems manage and regulate the behavior of devices or other systems using control loops to automatically adjust the value of some measured variables to equal the value of a desired set-point. These systems normally interact with physical parts or operate in physical environments, where uncertainty is unavoidable. Traditional approaches to manage that uncertainty use either robust control algorithms that consider bounded variations of the uncertain variables and worst-case scenarios or adaptive control methods that estimate the parameters and change the control laws accordingly. In this article, we propose to include the sources of uncertainty in the system models as first-class entities using random variables to simulate adaptive and control systems more faithfully, including not only the use of random variables to represent and operate with uncertain values but also to represent decisions based on their comparisons. Two exemplar systems are used to illustrate and validate our proposal.</p>\",\"PeriodicalId\":50943,\"journal\":{\"name\":\"ACM Transactions on Modeling and Computer Simulation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Modeling and Computer Simulation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3589517\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Modeling and Computer Simulation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3589517","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

自适应系统管理和调节设备或其他系统的行为,使用控制回路自动调整一些测量变量的值,使其等于期望的设定点的值。这些系统通常与物理部件相互作用或在物理环境中运行,其中不确定性是不可避免的。管理这种不确定性的传统方法要么使用鲁棒控制算法,考虑不确定变量和最坏情况的有界变化,要么使用自适应控制方法,估计参数并相应地改变控制律。在本文中,我们建议将系统模型中的不确定性来源作为使用随机变量更忠实地模拟自适应和控制系统的第一类实体,不仅包括使用随机变量来表示和操作不确定值,而且还包括基于它们的比较来表示决策。使用两个示例系统来说明和验证我们的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uncertainty-aware Simulation of Adaptive Systems

Adaptive systems manage and regulate the behavior of devices or other systems using control loops to automatically adjust the value of some measured variables to equal the value of a desired set-point. These systems normally interact with physical parts or operate in physical environments, where uncertainty is unavoidable. Traditional approaches to manage that uncertainty use either robust control algorithms that consider bounded variations of the uncertain variables and worst-case scenarios or adaptive control methods that estimate the parameters and change the control laws accordingly. In this article, we propose to include the sources of uncertainty in the system models as first-class entities using random variables to simulate adaptive and control systems more faithfully, including not only the use of random variables to represent and operate with uncertain values but also to represent decisions based on their comparisons. Two exemplar systems are used to illustrate and validate our proposal.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Modeling and Computer Simulation
ACM Transactions on Modeling and Computer Simulation 工程技术-计算机:跨学科应用
CiteScore
2.50
自引率
22.20%
发文量
29
审稿时长
>12 weeks
期刊介绍: The ACM Transactions on Modeling and Computer Simulation (TOMACS) provides a single archival source for the publication of high-quality research and developmental results referring to all phases of the modeling and simulation life cycle. The subjects of emphasis are discrete event simulation, combined discrete and continuous simulation, as well as Monte Carlo methods. The use of simulation techniques is pervasive, extending to virtually all the sciences. TOMACS serves to enhance the understanding, improve the practice, and increase the utilization of computer simulation. Submissions should contribute to the realization of these objectives, and papers treating applications should stress their contributions vis-á-vis these objectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信