利用空间基因组学和结构化方法回答生物学中的开放性问题

Siddhartha G Jena, Archit Verma, Barbara E Engelhardt
{"title":"利用空间基因组学和结构化方法回答生物学中的开放性问题","authors":"Siddhartha G Jena, Archit Verma, Barbara E Engelhardt","doi":"arxiv-2310.09482","DOIUrl":null,"url":null,"abstract":"Genomics methods have uncovered patterns in a range of biological systems,\nbut obscure important aspects of cell behavior: the shape, relative locations\nof, movement of, and interactions between cells in space. Spatial technologies\nthat collect genomic or epigenomic data while preserving spatial information\nhave begun to overcome these limitations. These new data promise a deeper\nunderstanding of the factors that affect cellular behavior, and in particular\nthe ability to directly test existing theories about cell state and variation\nin the context of morphology, location, motility, and signaling that could not\nbe tested before. Rapid advancements in resolution, ease-of-use, and scale of\nspatial genomics technologies to address these questions also require an\nupdated toolkit of statistical methods with which to interrogate these data. We\npresent four open biological questions that can now be answered using spatial\ngenomics data paired with methods for analysis. We outline spatial data\nmodalities for each that may yield specific insight, discuss how conflicting\ntheories may be tested by comparing the data to conceptual models of biological\nbehavior, and highlight statistical and machine learning-based tools that may\nprove particularly helpful to recover biological insight.","PeriodicalId":501321,"journal":{"name":"arXiv - QuanBio - Cell Behavior","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Answering open questions in biology using spatial genomics and structured methods\",\"authors\":\"Siddhartha G Jena, Archit Verma, Barbara E Engelhardt\",\"doi\":\"arxiv-2310.09482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Genomics methods have uncovered patterns in a range of biological systems,\\nbut obscure important aspects of cell behavior: the shape, relative locations\\nof, movement of, and interactions between cells in space. Spatial technologies\\nthat collect genomic or epigenomic data while preserving spatial information\\nhave begun to overcome these limitations. These new data promise a deeper\\nunderstanding of the factors that affect cellular behavior, and in particular\\nthe ability to directly test existing theories about cell state and variation\\nin the context of morphology, location, motility, and signaling that could not\\nbe tested before. Rapid advancements in resolution, ease-of-use, and scale of\\nspatial genomics technologies to address these questions also require an\\nupdated toolkit of statistical methods with which to interrogate these data. We\\npresent four open biological questions that can now be answered using spatial\\ngenomics data paired with methods for analysis. We outline spatial data\\nmodalities for each that may yield specific insight, discuss how conflicting\\ntheories may be tested by comparing the data to conceptual models of biological\\nbehavior, and highlight statistical and machine learning-based tools that may\\nprove particularly helpful to recover biological insight.\",\"PeriodicalId\":501321,\"journal\":{\"name\":\"arXiv - QuanBio - Cell Behavior\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Cell Behavior\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2310.09482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Cell Behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2310.09482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基因组学方法揭示了一系列生物系统的模式,但模糊了细胞行为的重要方面:细胞的形状、相对位置、运动和空间中细胞之间的相互作用。在保存空间信息的同时收集基因组或表观基因组数据的空间技术已经开始克服这些限制。这些新数据有望更深入地了解影响细胞行为的因素,特别是能够直接测试关于细胞状态和变异的现有理论,这些理论在形态、位置、运动性和信号传导的背景下是以前无法测试的。为了解决这些问题,空间基因组技术在分辨率、易用性和规模方面的快速发展也需要更新的统计方法工具包来查询这些数据。我们提出了四个开放的生物学问题,现在可以使用空间基因组学数据与分析方法配对来回答。我们概述了每种可能产生特定见解的空间数据模式,讨论了如何通过将数据与生物行为的概念模型进行比较来测试相互冲突的理论,并强调了可能特别有助于恢复生物学见解的统计和机器学习工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Answering open questions in biology using spatial genomics and structured methods
Genomics methods have uncovered patterns in a range of biological systems, but obscure important aspects of cell behavior: the shape, relative locations of, movement of, and interactions between cells in space. Spatial technologies that collect genomic or epigenomic data while preserving spatial information have begun to overcome these limitations. These new data promise a deeper understanding of the factors that affect cellular behavior, and in particular the ability to directly test existing theories about cell state and variation in the context of morphology, location, motility, and signaling that could not be tested before. Rapid advancements in resolution, ease-of-use, and scale of spatial genomics technologies to address these questions also require an updated toolkit of statistical methods with which to interrogate these data. We present four open biological questions that can now be answered using spatial genomics data paired with methods for analysis. We outline spatial data modalities for each that may yield specific insight, discuss how conflicting theories may be tested by comparing the data to conceptual models of biological behavior, and highlight statistical and machine learning-based tools that may prove particularly helpful to recover biological insight.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信