平均绝对方向性损失作为算法投资策略中机器学习问题的新损失函数

Jakub Michańków, Paweł Sakowski, Robert Ślepaczuk
{"title":"平均绝对方向性损失作为算法投资策略中机器学习问题的新损失函数","authors":"Jakub Michańków, Paweł Sakowski, Robert Ślepaczuk","doi":"arxiv-2309.10546","DOIUrl":null,"url":null,"abstract":"This paper investigates the issue of an adequate loss function in the\noptimization of machine learning models used in the forecasting of financial\ntime series for the purpose of algorithmic investment strategies (AIS)\nconstruction. We propose the Mean Absolute Directional Loss (MADL) function,\nsolving important problems of classical forecast error functions in extracting\ninformation from forecasts to create efficient buy/sell signals in algorithmic\ninvestment strategies. Finally, based on the data from two different asset\nclasses (cryptocurrencies: Bitcoin and commodities: Crude Oil), we show that\nthe new loss function enables us to select better hyperparameters for the LSTM\nmodel and obtain more efficient investment strategies, with regard to\nrisk-adjusted return metrics on the out-of-sample data.","PeriodicalId":501372,"journal":{"name":"arXiv - QuantFin - General Finance","volume":"203 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mean Absolute Directional Loss as a New Loss Function for Machine Learning Problems in Algorithmic Investment Strategies\",\"authors\":\"Jakub Michańków, Paweł Sakowski, Robert Ślepaczuk\",\"doi\":\"arxiv-2309.10546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the issue of an adequate loss function in the\\noptimization of machine learning models used in the forecasting of financial\\ntime series for the purpose of algorithmic investment strategies (AIS)\\nconstruction. We propose the Mean Absolute Directional Loss (MADL) function,\\nsolving important problems of classical forecast error functions in extracting\\ninformation from forecasts to create efficient buy/sell signals in algorithmic\\ninvestment strategies. Finally, based on the data from two different asset\\nclasses (cryptocurrencies: Bitcoin and commodities: Crude Oil), we show that\\nthe new loss function enables us to select better hyperparameters for the LSTM\\nmodel and obtain more efficient investment strategies, with regard to\\nrisk-adjusted return metrics on the out-of-sample data.\",\"PeriodicalId\":501372,\"journal\":{\"name\":\"arXiv - QuantFin - General Finance\",\"volume\":\"203 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - General Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2309.10546\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - General Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2309.10546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了用于预测金融时间序列的机器学习模型优化中适当损失函数的问题,以用于算法投资策略(AIS)的构建。我们提出了平均绝对方向损失(MADL)函数,解决了经典预测误差函数在从预测中提取信息以在算法投资策略中创建有效的买入/卖出信号方面的重要问题。最后,基于来自两种不同资产类别(加密货币:比特币和商品:原油)的数据,我们证明了新的损失函数使我们能够为lstm模型选择更好的超参数,并获得更有效的投资策略,考虑到样本外数据的风险调整收益指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mean Absolute Directional Loss as a New Loss Function for Machine Learning Problems in Algorithmic Investment Strategies
This paper investigates the issue of an adequate loss function in the optimization of machine learning models used in the forecasting of financial time series for the purpose of algorithmic investment strategies (AIS) construction. We propose the Mean Absolute Directional Loss (MADL) function, solving important problems of classical forecast error functions in extracting information from forecasts to create efficient buy/sell signals in algorithmic investment strategies. Finally, based on the data from two different asset classes (cryptocurrencies: Bitcoin and commodities: Crude Oil), we show that the new loss function enables us to select better hyperparameters for the LSTM model and obtain more efficient investment strategies, with regard to risk-adjusted return metrics on the out-of-sample data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信