处理布隆迪主权债券市场缺失数据

Irène Irakoze, Rédempteur Ntawiratsa, David Niyukuri
{"title":"处理布隆迪主权债券市场缺失数据","authors":"Irène Irakoze, Rédempteur Ntawiratsa, David Niyukuri","doi":"arxiv-2309.17379","DOIUrl":null,"url":null,"abstract":"Constructing an accurate yield curve is essential for evaluating financial\ninstruments and analyzing market trends in the bond market. However, in the\ncase of the Burundian sovereign bond market, the presence of missing data poses\na significant challenge to accurately constructing the yield curve. In this\npaper, we explore the limitations and data availability constraints specific to\nthe Burundian sovereign market and propose robust methodologies to effectively\nhandle missing data. The results indicate that the Linear Regression method,\nand the Previous value method perform consistently well across variables,\napproximating a normal distribution for the error values. The non parametric\nMissing Value Imputation using Random Forest (miss-Forest) method performs well\nfor coupon rates but poorly for bond prices, and the Next value method shows\nmixed results. Ultimately, the Linear Regression (LR) method is recommended for\nimputing missing data due to its ability to approximate normality and\npredictive capabilities. However, filling missing values with previous values\nhas high accuracy, thus, it will be the best choice when we have less\ninformation to be able to increase accuracy for LR. This research contributes\nto the development of financial products, trading strategies, and overall\nmarket development in Burundi by improving our understanding of the yield curve\ndynamics.","PeriodicalId":501372,"journal":{"name":"arXiv - QuantFin - General Finance","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Handling missing data in Burundian sovereign bond market\",\"authors\":\"Irène Irakoze, Rédempteur Ntawiratsa, David Niyukuri\",\"doi\":\"arxiv-2309.17379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Constructing an accurate yield curve is essential for evaluating financial\\ninstruments and analyzing market trends in the bond market. However, in the\\ncase of the Burundian sovereign bond market, the presence of missing data poses\\na significant challenge to accurately constructing the yield curve. In this\\npaper, we explore the limitations and data availability constraints specific to\\nthe Burundian sovereign market and propose robust methodologies to effectively\\nhandle missing data. The results indicate that the Linear Regression method,\\nand the Previous value method perform consistently well across variables,\\napproximating a normal distribution for the error values. The non parametric\\nMissing Value Imputation using Random Forest (miss-Forest) method performs well\\nfor coupon rates but poorly for bond prices, and the Next value method shows\\nmixed results. Ultimately, the Linear Regression (LR) method is recommended for\\nimputing missing data due to its ability to approximate normality and\\npredictive capabilities. However, filling missing values with previous values\\nhas high accuracy, thus, it will be the best choice when we have less\\ninformation to be able to increase accuracy for LR. This research contributes\\nto the development of financial products, trading strategies, and overall\\nmarket development in Burundi by improving our understanding of the yield curve\\ndynamics.\",\"PeriodicalId\":501372,\"journal\":{\"name\":\"arXiv - QuantFin - General Finance\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - General Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2309.17379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - General Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2309.17379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

构建准确的收益率曲线对于评估金融工具和分析债券市场的市场趋势至关重要。然而,就布隆迪主权债券市场而言,数据缺失的存在对准确构建收益率曲线构成了重大挑战。在本文中,我们探讨了布隆迪主权市场特有的局限性和数据可用性约束,并提出了有效处理缺失数据的稳健方法。结果表明,线性回归方法和先前值方法在各变量之间的表现一致,误差值近似于正态分布。使用随机森林(miss-Forest)方法的非参数缺失值Imputation对票面利率表现良好,但对债券价格表现不佳,下一个值方法显示出混合的结果。最后,线性回归(LR)方法被推荐用于输入缺失数据,因为它具有近似正态性和预测能力。然而,用先前的值填充缺失值具有很高的准确性,因此,当我们的信息较少时,它将是能够提高LR精度的最佳选择。本研究通过提高我们对收益率曲线动力学的理解,有助于布隆迪金融产品、交易策略和整体市场发展的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Handling missing data in Burundian sovereign bond market
Constructing an accurate yield curve is essential for evaluating financial instruments and analyzing market trends in the bond market. However, in the case of the Burundian sovereign bond market, the presence of missing data poses a significant challenge to accurately constructing the yield curve. In this paper, we explore the limitations and data availability constraints specific to the Burundian sovereign market and propose robust methodologies to effectively handle missing data. The results indicate that the Linear Regression method, and the Previous value method perform consistently well across variables, approximating a normal distribution for the error values. The non parametric Missing Value Imputation using Random Forest (miss-Forest) method performs well for coupon rates but poorly for bond prices, and the Next value method shows mixed results. Ultimately, the Linear Regression (LR) method is recommended for imputing missing data due to its ability to approximate normality and predictive capabilities. However, filling missing values with previous values has high accuracy, thus, it will be the best choice when we have less information to be able to increase accuracy for LR. This research contributes to the development of financial products, trading strategies, and overall market development in Burundi by improving our understanding of the yield curve dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信