浓固溶体合金中缓慢和化学偏置的间隙扩散:机制和方法

Biao Xu, Haijun Fu, Shasha Huang, Shihua Ma, Yaoxu Xiong, Jun Zhang, Xuepeng Xiang, Wenyu Lu, Ji-Jung Kai, Shijun Zhao
{"title":"浓固溶体合金中缓慢和化学偏置的间隙扩散:机制和方法","authors":"Biao Xu, Haijun Fu, Shasha Huang, Shihua Ma, Yaoxu Xiong, Jun Zhang, Xuepeng Xiang, Wenyu Lu, Ji-Jung Kai, Shijun Zhao","doi":"arxiv-2311.16727","DOIUrl":null,"url":null,"abstract":"Interstitial diffusion is a pivotal process that governs the phase stability\nand irradiation response of materials in non-equilibrium conditions. In this\nwork, we study sluggish and chemically-biased interstitial diffusion in Fe-Ni\nconcentrated solid solution alloys (CSAs) by combining machine learning (ML)\nand kinetic Monte Carlo (kMC), where ML is used to accurately and efficiently\npredict the migration energy barriers on-the-fly. The ML-kMC reproduces the\ndiffusivity that was reported by molecular dynamics results at high\ntemperatures. With this powerful tool, we find that the observed sluggish\ndiffusion and the \"Ni-Ni-Ni\"-biased diffusion in Fe-Ni alloys are ascribed to a\nunique \"Barrier Lock\" mechanism, whereas the \"Fe-Fe-Fe\"-biased diffusion is\ninfluenced by a \"Component Dominance\" mechanism. Inspired by the mentioned\nmechanisms, a practical AvgS-kMC method is proposed for conveniently and\nswiftly determining interstitial-mediated diffusivity by only relying on the\nmean energy barriers of migration patterns. Combining the AvgS-kMC with the\ndifferential evolutionary algorithm, an inverse design strategy for optimizing\nsluggish diffusion properties is applied to emphasize the crucial role of\nfavorable migration patterns.","PeriodicalId":501259,"journal":{"name":"arXiv - PHYS - Atomic and Molecular Clusters","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sluggish and Chemically-Biased Interstitial Diffusion in Concentrated Solid Solution Alloys: Mechanisms and Methods\",\"authors\":\"Biao Xu, Haijun Fu, Shasha Huang, Shihua Ma, Yaoxu Xiong, Jun Zhang, Xuepeng Xiang, Wenyu Lu, Ji-Jung Kai, Shijun Zhao\",\"doi\":\"arxiv-2311.16727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interstitial diffusion is a pivotal process that governs the phase stability\\nand irradiation response of materials in non-equilibrium conditions. In this\\nwork, we study sluggish and chemically-biased interstitial diffusion in Fe-Ni\\nconcentrated solid solution alloys (CSAs) by combining machine learning (ML)\\nand kinetic Monte Carlo (kMC), where ML is used to accurately and efficiently\\npredict the migration energy barriers on-the-fly. The ML-kMC reproduces the\\ndiffusivity that was reported by molecular dynamics results at high\\ntemperatures. With this powerful tool, we find that the observed sluggish\\ndiffusion and the \\\"Ni-Ni-Ni\\\"-biased diffusion in Fe-Ni alloys are ascribed to a\\nunique \\\"Barrier Lock\\\" mechanism, whereas the \\\"Fe-Fe-Fe\\\"-biased diffusion is\\ninfluenced by a \\\"Component Dominance\\\" mechanism. Inspired by the mentioned\\nmechanisms, a practical AvgS-kMC method is proposed for conveniently and\\nswiftly determining interstitial-mediated diffusivity by only relying on the\\nmean energy barriers of migration patterns. Combining the AvgS-kMC with the\\ndifferential evolutionary algorithm, an inverse design strategy for optimizing\\nsluggish diffusion properties is applied to emphasize the crucial role of\\nfavorable migration patterns.\",\"PeriodicalId\":501259,\"journal\":{\"name\":\"arXiv - PHYS - Atomic and Molecular Clusters\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Atomic and Molecular Clusters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2311.16727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atomic and Molecular Clusters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.16727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

间隙扩散是控制材料在非平衡状态下的相稳定性和辐照响应的关键过程。在这项工作中,我们通过结合机器学习(ML)和动力学蒙特卡罗(kMC)研究了fe - nicion固溶体合金(csa)中缓慢和化学偏态的间隙扩散,其中ML用于准确有效地预测动态迁移能垒。ML-kMC再现了高温下分子动力学结果所报告的扩散率。利用这个强大的工具,我们发现在Fe-Ni合金中观察到的缓慢扩散和“Ni-Ni-Ni”偏扩散归因于独特的“势垒锁定”机制,而“Fe-Fe-Fe”偏扩散受“组分优势”机制的影响。受上述机制的启发,提出了一种实用的AvgS-kMC方法,该方法仅依赖于迁移模式的平均能量势垒,可以方便、快速地确定间隙介导的扩散率。将AvgS-kMC与差分进化算法相结合,提出了一种优化缓慢扩散特性的逆向设计策略,强调了有利迁移模式的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sluggish and Chemically-Biased Interstitial Diffusion in Concentrated Solid Solution Alloys: Mechanisms and Methods
Interstitial diffusion is a pivotal process that governs the phase stability and irradiation response of materials in non-equilibrium conditions. In this work, we study sluggish and chemically-biased interstitial diffusion in Fe-Ni concentrated solid solution alloys (CSAs) by combining machine learning (ML) and kinetic Monte Carlo (kMC), where ML is used to accurately and efficiently predict the migration energy barriers on-the-fly. The ML-kMC reproduces the diffusivity that was reported by molecular dynamics results at high temperatures. With this powerful tool, we find that the observed sluggish diffusion and the "Ni-Ni-Ni"-biased diffusion in Fe-Ni alloys are ascribed to a unique "Barrier Lock" mechanism, whereas the "Fe-Fe-Fe"-biased diffusion is influenced by a "Component Dominance" mechanism. Inspired by the mentioned mechanisms, a practical AvgS-kMC method is proposed for conveniently and swiftly determining interstitial-mediated diffusivity by only relying on the mean energy barriers of migration patterns. Combining the AvgS-kMC with the differential evolutionary algorithm, an inverse design strategy for optimizing sluggish diffusion properties is applied to emphasize the crucial role of favorable migration patterns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信