细菌在无序介质中的扩散,通过忘记介质

Henry H. Mattingly
{"title":"细菌在无序介质中的扩散,通过忘记介质","authors":"Henry H. Mattingly","doi":"arxiv-2311.10612","DOIUrl":null,"url":null,"abstract":"We study bacterial diffusion in disordered porous media. Interactions with\nobstacles, at unknown locations, make this problem challenging. We approach it\nby abstracting the environment to cell states with memoryless transitions. With\nthis, we derive an effective diffusivity that agrees well with simulations in\nexplicit geometries. The diffusivity is non-monotonic, and we solve the optimal\nrun length. We also find a rescaling that causes all of the theory and\nsimulations to collapse. Our results indicate that a small set of microscopic\nfeatures captures bacterial diffusion in disordered media.","PeriodicalId":501321,"journal":{"name":"arXiv - QuanBio - Cell Behavior","volume":"740 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bacterial diffusion in disordered media, by forgetting the media\",\"authors\":\"Henry H. Mattingly\",\"doi\":\"arxiv-2311.10612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study bacterial diffusion in disordered porous media. Interactions with\\nobstacles, at unknown locations, make this problem challenging. We approach it\\nby abstracting the environment to cell states with memoryless transitions. With\\nthis, we derive an effective diffusivity that agrees well with simulations in\\nexplicit geometries. The diffusivity is non-monotonic, and we solve the optimal\\nrun length. We also find a rescaling that causes all of the theory and\\nsimulations to collapse. Our results indicate that a small set of microscopic\\nfeatures captures bacterial diffusion in disordered media.\",\"PeriodicalId\":501321,\"journal\":{\"name\":\"arXiv - QuanBio - Cell Behavior\",\"volume\":\"740 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Cell Behavior\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2311.10612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Cell Behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.10612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究细菌在无序多孔介质中的扩散。在未知位置与障碍的交互使这个问题具有挑战性。我们通过将环境抽象为具有无记忆转换的单元状态来实现它。由此,我们得到了一个有效的扩散系数,它与非显式几何的模拟很好地吻合。扩散系数是非单调的,并求出了最优运行长度。我们还发现了一个导致所有理论和模拟崩溃的重尺度。我们的结果表明,一小组显微镜特征捕捉细菌在无序介质中的扩散。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bacterial diffusion in disordered media, by forgetting the media
We study bacterial diffusion in disordered porous media. Interactions with obstacles, at unknown locations, make this problem challenging. We approach it by abstracting the environment to cell states with memoryless transitions. With this, we derive an effective diffusivity that agrees well with simulations in explicit geometries. The diffusivity is non-monotonic, and we solve the optimal run length. We also find a rescaling that causes all of the theory and simulations to collapse. Our results indicate that a small set of microscopic features captures bacterial diffusion in disordered media.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信