关于Guyon-Lekeufack波动率模型

Marcel Nutz, Andrés Riveros Valdevenito
{"title":"关于Guyon-Lekeufack波动率模型","authors":"Marcel Nutz, Andrés Riveros Valdevenito","doi":"arxiv-2307.01319","DOIUrl":null,"url":null,"abstract":"Guyon and Lekeufack recently proposed a path-dependent volatility model and\ndocumented its excellent performance in fitting market data and capturing\nstylized facts. The instantaneous volatility is modeled as a linear combination\nof two processes, one is an integral of weighted past price returns and the\nother is the square-root of an integral of weighted past squared volatility.\nEach of the weightings is built using two exponential kernels reflecting long\nand short memory. Mathematically, the model is a coupled system of four\nstochastic differential equations. Our main result is the wellposedness of this\nsystem: the model has a unique strong (non-explosive) solution for realistic\nparameter values. We also study the positivity of the resulting volatility\nprocess.","PeriodicalId":501355,"journal":{"name":"arXiv - QuantFin - Pricing of Securities","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Guyon-Lekeufack Volatility Model\",\"authors\":\"Marcel Nutz, Andrés Riveros Valdevenito\",\"doi\":\"arxiv-2307.01319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Guyon and Lekeufack recently proposed a path-dependent volatility model and\\ndocumented its excellent performance in fitting market data and capturing\\nstylized facts. The instantaneous volatility is modeled as a linear combination\\nof two processes, one is an integral of weighted past price returns and the\\nother is the square-root of an integral of weighted past squared volatility.\\nEach of the weightings is built using two exponential kernels reflecting long\\nand short memory. Mathematically, the model is a coupled system of four\\nstochastic differential equations. Our main result is the wellposedness of this\\nsystem: the model has a unique strong (non-explosive) solution for realistic\\nparameter values. We also study the positivity of the resulting volatility\\nprocess.\",\"PeriodicalId\":501355,\"journal\":{\"name\":\"arXiv - QuantFin - Pricing of Securities\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Pricing of Securities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2307.01319\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Pricing of Securities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2307.01319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Guyon和Lekeufack最近提出了一个路径依赖的波动率模型,并证明了它在拟合市场数据和捕捉程式化事实方面的出色表现。瞬时波动率被建模为两个过程的线性组合,一个是加权过去价格回报的积分,另一个是加权过去平方波动率积分的平方根。每个权重都是使用反映长内存和短内存的两个指数核构建的。数学上,该模型是一个由四个随机微分方程组成的耦合系统。我们的主要结果是该系统的适位性:该模型对实际参数值具有唯一的强(非爆炸)解。我们还研究了由此产生的波动过程的积极性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Guyon-Lekeufack Volatility Model
Guyon and Lekeufack recently proposed a path-dependent volatility model and documented its excellent performance in fitting market data and capturing stylized facts. The instantaneous volatility is modeled as a linear combination of two processes, one is an integral of weighted past price returns and the other is the square-root of an integral of weighted past squared volatility. Each of the weightings is built using two exponential kernels reflecting long and short memory. Mathematically, the model is a coupled system of four stochastic differential equations. Our main result is the wellposedness of this system: the model has a unique strong (non-explosive) solution for realistic parameter values. We also study the positivity of the resulting volatility process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信